- Introducción
- Configuración de su cuenta
- Equilibrio
- Clústeres
- Deriva del concepto
- Cobertura
- Conjuntos de datos
- Campos generales
- Etiquetas (predicciones, niveles de confianza, jerarquía de etiquetas y sentimiento de etiqueta)
- Modelos
- Transmisiones
- Clasificación del modelo
- Proyectos
- Precisión
- Recordar
- Mensajes anotados y no anotados
- Campos extraídos
- Fuentes
- Taxonomías
- Formación
- Predicciones positivas y negativas verdaderas y falsas
- Validación
- Mensajes
- Control y administración de acceso
- Gestionar fuentes y conjuntos de datos
- Comprender la estructura de datos y los permisos
- Crear o eliminar un origen de datos en la GUI
- Cargar un archivo CSV en un origen
- Preparando datos para cargar archivos .CSV
- Crear un conjunto de datos
- Fuentes y conjuntos de datos multilingües
- Habilitar sentimiento en un conjunto de datos
- Modificar la configuración del conjunto de datos
- Eliminar un mensaje
- Eliminar un conjunto de datos
- Exportar un conjunto de datos
- Utilizar integraciones de Exchange
- Entrenamiento y mantenimiento de modelos
- Comprender las etiquetas, los campos generales y los metadatos
- Jerarquía de etiquetas y mejores prácticas
- Comparar casos de uso de análisis y automatización
- Convertir tus objetivos en etiquetas
- Descripción general del proceso de entrenamiento del modelo
- Anotación generativa
- Estado de Dastaset
- Entrenamiento de modelos y mejores prácticas de anotación
- Entrenamiento con análisis de sentimiento de etiqueta habilitado
- Chat de entrenamiento y datos de llamadas
- Comprender los requisitos de datos
- Entrenamiento
- Introducción a Refinar
- Explicación de la precisión y la recuperación
- Precisión y recuperación
- Cómo funciona la validación
- Comprender y mejorar el rendimiento del modelo
- Razones para etiquetar una precisión media baja
- Entrenamiento utilizando la etiqueta Comprobar y la etiqueta Perdida
- Entrenamiento mediante la etiqueta de aprendizaje (refinar)
- Entrenamiento mediante Buscar (Refinar)
- Comprender y aumentar la cobertura
- Mejorar el equilibrio y utilizar Reequilibrar
- Cuándo dejar de entrenar tu modelo
- Uso de campos generales
- Extracción generativa
- Uso de análisis y supervisión
- Automations and Communications Mining™
- Desarrollador
- Uso de la API
- Tutorial de la API
- Fuentes
- Conjuntos de datos
- Comentarios
- Archivos adjuntos
- Predictions
- Crear una transmisión
- Actualizar una transmisión
- Obtener una transmisión por nombre
- Obtener todas las transmisiones
- Eliminar una transmisión
- Obtener resultados de la transmisión
- Obtener comentarios de una transmisión (heredado)
- Avanzar una transmisión
- Restablecer una transmisión
- Etiquetar una excepción
- Desetiquetar una excepción
- Eventos de auditoría
- Obtener todos los usuarios
- Cargar datos
- Descargando datos
- Integración de Exchange con el usuario del servicio de Azure
- Integración de Exchange con la autenticación de aplicaciones de Azure
- Integración de Exchange con Azure Application Authentication y Graph
- Obtener datos para Tableau con Python
- Integración de Elasticsearch
- Extracción de campos general
- Integración de Exchange autohospedado
- Marco de automatización de UiPath®
- Actividades oficiales de UiPath®
- Cómo aprenden las máquinas a entender palabras: una guía para las incrustaciones en PNL
- Aprendizaje basado en solicitudes con Transformers
- Efficient Transformers II: destilación de conocimientos y ajuste
- Transformadores eficientes I: mecanismos de atención
- Modelado de intenciones jerárquico profundo no supervisado: obtener valor sin datos de entrenamiento
- Corregir el sesgo de anotación con Communications Mining™
- Aprendizaje activo: mejores modelos ML en menos tiempo
- Todo está en los números: evaluar el rendimiento del modelo con métricas
- Por qué es importante la validación del modelo
- Comparación de Communications Mining™ y Google AutoML para la inteligencia de datos conversacional
- Licencia
- Preguntas frecuentes y más

Guía del usuario de Communications Mining
Para casos de uso de análisis y automatización en tiempo real, recomendamos utilizar la API de transmisión, que te permite iterar a través de mensajes en un conjunto de datos. Si integras Communications Mining™ como uno de los pasos de enriquecimiento en un proceso de datos, echa un vistazo a las rutas de la API Predecir que también pueden ser adecuadas para tu diseño.
Los conjuntos de datos se pueden exportar como CSV directamente en el navegador; no hay límite de tamaño, pero los archivos grandes pueden tardar mucho en descargarse. Recomendamos aplicar filtros antes de exportar para limitar el tamaño de la descarga y hacer que el archivo CSV sea más cómodo para trabajar. Otra opción para la descarga por lotes es utilizar la herramienta de línea de comandos de Communications Mining (disponible para Linux, Mac y Windows) o la ruta API de exportación.
- ¿QUÉ MÉTODO DE DESCARGA DEBO UTILIZAR?
Los métodos de descarga mencionados anteriormente diferirán ligeramente en cuanto a la forma en que proporcionan etiquetas previstas y campos generales. Asegúrate de revisar esta tabla de comparación para elegir el método que mejor se adapte a tu caso de uso.
- ¿CÓMO PUEDO UTILIZAR LAS ETIQUETAS DE COMUNICATION MINING EN UN CASO DE USO DE AUTOMATIZACIÓN?
Si necesitas ayuda para empezar con tu caso de uso de automatización, consulta más detalles sobre las API de transmisión en la página Transmisiones . Si quieres entender cómo utilizar las etiquetas de Communications Mining en un caso de uso de automatización, consulta la documentación de Etiquetas.
- ¿CÓMO PUEDO UTILIZAR LAS ETIQUETAS DE COMUNICATION MINING EN UN CASO DE USO DE ANÁLISIS?
Si quieres entender cómo utilizar las etiquetas de Communications Mining en un caso de uso de análisis, consulta la documentación de Etiquetas.