- Introducción
- Configuración de su cuenta
- Equilibrio
- Clústeres
- Deriva del concepto
- Cobertura
- Conjuntos de datos
- Campos generales
- Etiquetas (predicciones, niveles de confianza, jerarquía de etiquetas y sentimiento de etiqueta)
- Modelos
- Transmisiones
- Clasificación del modelo
- Proyectos
- Precisión
- Recordar
- Mensajes anotados y no anotados
- Campos extraídos
- Fuentes
- Taxonomías
- Formación
- Predicciones positivas y negativas verdaderas y falsas
- Validación
- Mensajes
- Control y administración de acceso
- Gestionar fuentes y conjuntos de datos
- Comprender la estructura de datos y los permisos
- Crear o eliminar un origen de datos en la GUI
- Preparando datos para cargar archivos .CSV
- Cargar un archivo CSV en un origen
- Crear un conjunto de datos
- Fuentes y conjuntos de datos multilingües
- Habilitar sentimiento en un conjunto de datos
- Modificar la configuración del conjunto de datos
- Eliminar un mensaje
- Eliminar un conjunto de datos
- Exportar un conjunto de datos
- Utilizar integraciones de Exchange
- Entrenamiento y mantenimiento de modelos
- Comprender las etiquetas, los campos generales y los metadatos
- Jerarquía de etiquetas y mejores prácticas
- Comparar casos de uso de análisis y automatización
- Convertir tus objetivos en etiquetas
- Descripción general del proceso de entrenamiento del modelo
- Anotación generativa
- Estado de Dastaset
- Entrenamiento de modelos y mejores prácticas de anotación
- Entrenamiento con análisis de sentimiento de etiqueta habilitado
- Comprender los requisitos de datos
- Entrenamiento
- Introducción a Refinar
- Explicación de la precisión y la recuperación
- Precisión y recuperación
- Cómo funciona la validación
- Comprender y mejorar el rendimiento del modelo
- Razones para etiquetar una precisión media baja
- Entrenamiento utilizando la etiqueta Comprobar y la etiqueta Perdida
- Entrenamiento mediante la etiqueta de aprendizaje (refinar)
- Entrenamiento mediante Buscar (Refinar)
- Comprender y aumentar la cobertura
- Mejorar el equilibrio y utilizar Reequilibrar
- Cuándo dejar de entrenar tu modelo
- Uso de campos generales
- Extracción generativa
- Uso de análisis y supervisión
- Automations and Communications Mining™
- Desarrollador
- Uso de la API
- Tutorial de la API
- Fuentes
- Conjuntos de datos
- Comentarios
- Archivos adjuntos
- Predictions
- Crear una transmisión
- Actualizar una transmisión
- Obtener una transmisión por nombre
- Obtener todas las transmisiones
- Eliminar una transmisión
- Obtener resultados de la transmisión
- Obtener comentarios de una transmisión (heredado)
- Avanzar una transmisión
- Restablecer una transmisión
- Etiquetar una excepción
- Desetiquetar una excepción
- Eventos de auditoría
- Obtener todos los usuarios
- Cargar datos
- Descargando datos
- Integración de Exchange con el usuario del servicio de Azure
- Integración de Exchange con la autenticación de aplicaciones de Azure
- Integración de Exchange con Azure Application Authentication y Graph
- Obtener datos para Tableau con Python
- Integración de Elasticsearch
- Extracción de campos general
- Integración de Exchange autohospedado
- Marco de automatización de UiPath®
- Actividades oficiales de UiPath®
- Cómo aprenden las máquinas a entender palabras: una guía para las incrustaciones en PNL
- Aprendizaje basado en solicitudes con Transformers
- Efficient Transformers II: destilación de conocimientos y ajuste
- Transformadores eficientes I: mecanismos de atención
- Modelado de intenciones jerárquico profundo no supervisado: obtener valor sin datos de entrenamiento
- Corregir el sesgo de anotación con Communications Mining™
- Aprendizaje activo: mejores modelos ML en menos tiempo
- Todo está en los números: evaluar el rendimiento del modelo con métricas
- Por qué es importante la validación del modelo
- Comparación de Communications Mining™ y Google AutoML para la inteligencia de datos conversacional
- Licencia
- Preguntas frecuentes y más

Guía del usuario de Communications Mining
Cuando creas una taxonomía anotando datos, estás creando un modelo. Este modelo utilizará las etiquetas que has aplicado a un conjunto de datos para identificar conceptos e intenciones similares en otros mensajes y predecir qué etiquetas se aplican a ellos.
Al hacerlo, cada etiqueta tendrá su propio conjunto de puntuaciones de precisión y recuperación.
Por ejemplo, considera tener, como parte de una taxonomía, una etiqueta en la plataforma llamada Solicitud de información. Para este escenario, la precisión y la recuperación podrían estar relacionadas con esto de la siguiente manera:
- Precisión : por cada 100 mensajes previstos con la etiqueta "Solicitud de información", es el porcentaje de veces que la "Solicitud de información" se predijo correctamente del total de veces que se predijo. Una precisión del 95 % significaría que de cada 100 mensajes, 95 se anotarían correctamente como "Solicitud de información" y 5 se anotarían incorrectamente (es decir, no deberían haberse anotado con esa etiqueta)
- Recuperación : por cada 100 mensajes que deberían haberse anotado como "Solicitud de información", cuántos encontró la plataforma. Una recuperación del 77 % significaría que había 23 mensajes que deberían haberse predicho con la etiqueta 'Solicitud de información', pero se los pasó por alto
La recuperación en todas las etiquetas está directamente relacionada con la cobertura de tu modelo.
Si estás seguro de que tu taxonomía cubre todos los conceptos relevantes dentro de tu conjunto de datos, y tus etiquetas tienen la precisión adecuada, entonces la recuperación de esas etiquetas determinará qué tan bien cubierto está tu conjunto de datos por las predicciones de las etiquetas. Si todas tus etiquetas tienen una alta recuperación, tu modelo tendrá una alta cobertura.
También necesitamos entender el equilibrio entre precisión y recuperación dentro de una versión particular del modelo.
Las estadísticas de precisión y recuperación para cada etiqueta en una versión particular del modelo están determinadas por un umbral de confianza (es decir, ¿Qué tan seguro es el modelo de que se aplica esta etiqueta?).
La plataforma publica estadísticas de precisión y recuperación en vivo en la página Validación, y los usuarios pueden comprender cómo los diferentes umbrales de confianza afectan a las puntuaciones de precisión y recuperación utilizando el control deslizante ajustable.
A medida que aumentas el umbral de confianza, el modelo tiene más certeza de que se aplica una etiqueta y, por lo tanto, la precisión suele aumentar. Al mismo tiempo, debido a que el modelo debe tener más confianza para aplicar una predicción, hará menos predicciones y, por lo general, la recuperación disminuirá. Lo contrario también suele ser el caso a medida que se reduce el umbral de confianza.
Por lo tanto, como regla general, cuando se ajusta el umbral de confianza y la precisión mejora, la recuperación suele disminuir, y viceversa.
Dentro de la plataforma, es importante comprender este compromiso y lo que significa al configurar automatizaciones utilizando la plataforma. Los usuarios tendrán que establecer un umbral de confianza para la etiqueta que quieren que forme parte de su automatización, y este umbral debe ajustarse para proporcionar precisión y recuperar estadísticas que sean aceptables para ese proceso.
Ciertos procesos pueden valorar una alta recuperación (capturar tantas instancias de un evento como sea posible), mientras que otros valorarán una alta precisión (identificar correctamente las instancias de un evento).