- Introducción
- Configuración de su cuenta
- Equilibrio
- Clústeres
- Deriva del concepto
- Cobertura
- Conjuntos de datos
- Campos generales
- Etiquetas (predicciones, niveles de confianza, jerarquía de etiquetas y sentimiento de etiqueta)
- Modelos
- Transmisiones
- Clasificación del modelo
- Proyectos
- Precisión
- Recordar
- Mensajes anotados y no anotados
- Campos extraídos
- Fuentes
- Taxonomías
- Formación
- Predicciones positivas y negativas verdaderas y falsas
- Validación
- Mensajes
- Control y administración de acceso
- Gestionar fuentes y conjuntos de datos
- Comprender la estructura de datos y los permisos
- Crear o eliminar un origen de datos en la GUI
- Cargar un archivo CSV en un origen
- Preparando datos para cargar archivos .CSV
- Crear un conjunto de datos
- Fuentes y conjuntos de datos multilingües
- Habilitar sentimiento en un conjunto de datos
- Modificar la configuración del conjunto de datos
- Eliminar un mensaje
- Eliminar un conjunto de datos
- Exportar un conjunto de datos
- Utilizar integraciones de Exchange
- Entrenamiento y mantenimiento de modelos
- Comprender las etiquetas, los campos generales y los metadatos
- Jerarquía de etiquetas y mejores prácticas
- Comparar casos de uso de análisis y automatización
- Convertir tus objetivos en etiquetas
- Descripción general del proceso de entrenamiento del modelo
- Anotación generativa
- Estado de Dastaset
- Entrenamiento de modelos y mejores prácticas de anotación
- Entrenamiento con análisis de sentimiento de etiqueta habilitado
- Chat de entrenamiento y datos de llamadas
- Comprender los requisitos de datos
- Entrenamiento
- Introducción a Refinar
- Explicación de la precisión y la recuperación
- Precisión y recuperación
- Cómo funciona la validación
- Comprender y mejorar el rendimiento del modelo
- Razones para etiquetar una precisión media baja
- Entrenamiento utilizando la etiqueta Comprobar y la etiqueta Perdida
- Entrenamiento mediante la etiqueta de aprendizaje (refinar)
- Entrenamiento mediante Buscar (Refinar)
- Comprender y aumentar la cobertura
- Mejorar el equilibrio y utilizar Reequilibrar
- Cuándo dejar de entrenar tu modelo
- Uso de campos generales
- Extracción generativa
- Uso de análisis y supervisión
- Automations and Communications Mining™
- Desarrollador
- Uso de la API
- Tutorial de la API
- Fuentes
- Conjuntos de datos
- Comentarios
- Archivos adjuntos
- Predictions
- Crear una transmisión
- Actualizar una transmisión
- Obtener una transmisión por nombre
- Obtener todas las transmisiones
- Eliminar una transmisión
- Obtener resultados de la transmisión
- Obtener comentarios de una transmisión (heredado)
- Avanzar una transmisión
- Restablecer una transmisión
- Etiquetar una excepción
- Desetiquetar una excepción
- Eventos de auditoría
- Obtener todos los usuarios
- Cargar datos
- Descargando datos
- Integración de Exchange con el usuario del servicio de Azure
- Integración de Exchange con la autenticación de aplicaciones de Azure
- Integración de Exchange con Azure Application Authentication y Graph
- Obtener datos para Tableau con Python
- Integración de Elasticsearch
- Extracción de campos general
- Integración de Exchange autohospedado
- Marco de automatización de UiPath®
- Actividades oficiales de UiPath®
- Cómo aprenden las máquinas a entender palabras: una guía para las incrustaciones en PNL
- Aprendizaje basado en solicitudes con Transformers
- Efficient Transformers II: destilación de conocimientos y ajuste
- Transformadores eficientes I: mecanismos de atención
- Modelado de intenciones jerárquico profundo no supervisado: obtener valor sin datos de entrenamiento
- Corregir el sesgo de anotación con Communications Mining™
- Aprendizaje activo: mejores modelos ML en menos tiempo
- Todo está en los números: evaluar el rendimiento del modelo con métricas
- Por qué es importante la validación del modelo
- Comparación de Communications Mining™ y Google AutoML para la inteligencia de datos conversacional
- Licencia
- Preguntas frecuentes y más

Guía del usuario de Communications Mining
- Etiquetas
- Campos generales
Labels describe the entire message, for example, Cancellation, Trade failure, or Urgent. General fields refer to specific parts of the message, for example, Counterparty name, Customer ID, or Cancellation date.
In a downstream process, labels are used to triage, prioritize, and decide what kind of action should be taken. General fields are used to fill in fields of requests. For example, a downstream process may filter messages to those that have the Cancellation label, and then use the extracted Customer ID and Cancellation date general fields to call an API to automatically process the cancellation.
Communications Mining comes with a number of built-in general fields for common concepts, such as Organization, Currency Code, or Date. You can customize the built-in general fields of Communications Mining so that they are tailored to your specific use case. For example, Communications Mining has a highly trained pre-built Date general field which you can use as a starting point for a more customized general field such as Renewal Date or Cancellation Date. Alternatively, you can start from scratch and teach Communications Mining to recognize something completely new.
Este buzón recibe solicitudes de renovación, cancelación y administración que ocasionalmente son Urgentes. Communications Mining™ ha sido entrenado para reconocer cada uno de estos conceptos, y las predicciones de Communications Mining pueden utilizarse para clasificar los correos electrónicos al equipo correcto creando tickets de soporte.
Dado que el formato del número de póliza es específico de esta aseguradora en particular, configuramos el campo general para que sea entrenable desde cero. Por otro lado, la organización asegurada es un tipo de organización, por lo que la configuramos para que sea entrenable en función del campo general Organización incorporado. Por último, hemos observado que los intermediarios no siempre ponen su nombre en el correo electrónico, por lo que decidimos utilizar la dirección de correo electrónico del intermediario (disponible en los metadatos de los comentarios) para buscar el nombre correspondiente en una base de datos interna, en lugar de extraerlo como campo general.
The following table summarizes these approaches.
Configuración | Cuándo utilizarlo | Ejemplos |
---|---|---|
Campo general entrenable sin campo general base | Se utiliza con mayor frecuencia para varios tipos de ID internos, o cuando no hay un campo general base adecuado en Communications Mining. | Número de póliza, ID de cliente |
Campo general entrenable con campo general base | Se utiliza para personalizar un campo general prediseñado existente en Communications Mining. | Fecha de cancelación (basada en la fecha), organización asegurada (basada en la organización) |
Campos generales prediseñados (no entrenables) | Se utiliza para campos generales que deben coincidir exactamente como se definen, en los que el entrenamiento invitaría a errores. | es en |
Utilizar metadatos de comentarios en lugar de campos generales | Se utiliza cuando la información necesaria ya está presente en forma estructurada en los metadatos del comentario. | Dirección del remitente, Dominio del remitente |
Communications Mining™ ofrece múltiples formas de obtener predicciones, incluidos los campos generales previstos. Consulta la descripción general de la descarga de datos para comprender qué método funcionará mejor para tu caso de uso.
Cualquiera que sea el método que elijas, debes tener en cuenta los siguientes casos límite y manejarlos en tu aplicación:
- No todos los campos generales esperados están presentes en la respuesta
- La respuesta contiene varias coincidencias para uno o más campos generales
- No todos los campos generales presentes en la respuesta son correctos
En esta sección repasaremos cada uno de estos casos límite con más detalle.
No todos los campos generales están presentes en la respuesta
La respuesta contiene varias coincidencias para uno o más campos generales
Note that you can use the metadata in the response when handling such cases. For example, we can choose to preferentially pick policy numbers that appear in the email subject over those that appear in the email body. The following example shows the response that the API will return for our example email.
{
"predictions": [
{
"uid": "aa05ba2250de48e3.7588b85f68f81c3b",
"labels": [...],
"entities": [
{
"id": "6a1d11118b60868e",
"name": "policy-number",
"span": {
"content_part": "body",
"message_index": 0,
"utf16_byte_start": 200,
"utf16_byte_end": 222,
"char_start": 100,
"char_end": 111
},
"kind": "policy-number",
"formatted_value": "GHI-0204963"
},
{
"id": "6a1d11118b60868e",
"name": "policy-number",
"span": {
"content_part": "subject",
"message_index": 0,
"utf16_byte_start": 0,
"utf16_byte_end": 22,
"char_start": 0,
"char_end": 11
},
"kind": "policy-number",
"formatted_value": "GHI-0068448"
},
{...},
{...},
{...}
]
}
],
"model": {
"version": 31,
"time": "2021-07-14T15:00:57.608000Z"
},
"status": "ok"
}
{
"predictions": [
{
"uid": "aa05ba2250de48e3.7588b85f68f81c3b",
"labels": [...],
"entities": [
{
"id": "6a1d11118b60868e",
"name": "policy-number",
"span": {
"content_part": "body",
"message_index": 0,
"utf16_byte_start": 200,
"utf16_byte_end": 222,
"char_start": 100,
"char_end": 111
},
"kind": "policy-number",
"formatted_value": "GHI-0204963"
},
{
"id": "6a1d11118b60868e",
"name": "policy-number",
"span": {
"content_part": "subject",
"message_index": 0,
"utf16_byte_start": 0,
"utf16_byte_end": 22,
"char_start": 0,
"char_end": 11
},
"kind": "policy-number",
"formatted_value": "GHI-0068448"
},
{...},
{...},
{...}
]
}
],
"model": {
"version": 31,
"time": "2021-07-14T15:00:57.608000Z"
},
"status": "ok"
}