- Introducción
- Configuración de su cuenta
- Equilibrio
- Clústeres
- Deriva del concepto
- Cobertura
- Conjuntos de datos
- Campos generales
- Etiquetas (predicciones, niveles de confianza, jerarquía de etiquetas y sentimiento de etiqueta)
- Modelos
- Transmisiones
- Clasificación del modelo
- Proyectos
- Precisión
- Recordar
- Mensajes anotados y no anotados
- Campos extraídos
- Fuentes
- Taxonomías
- Formación
- Predicciones positivas y negativas verdaderas y falsas
- Validación
- Mensajes
- Control y administración de acceso
- Gestionar fuentes y conjuntos de datos
- Comprender la estructura de datos y los permisos
- Crear o eliminar un origen de datos en la GUI
- Preparando datos para cargar archivos .CSV
- Cargar un archivo CSV en un origen
- Crear un conjunto de datos
- Fuentes y conjuntos de datos multilingües
- Habilitar sentimiento en un conjunto de datos
- Modificar la configuración del conjunto de datos
- Eliminar un mensaje
- Eliminar un conjunto de datos
- Exportar un conjunto de datos
- Utilizar integraciones de Exchange
- Entrenamiento y mantenimiento de modelos
- Comprender las etiquetas, los campos generales y los metadatos
- Jerarquía de etiquetas y mejores prácticas
- Comparar casos de uso de análisis y automatización
- Convertir tus objetivos en etiquetas
- Descripción general del proceso de entrenamiento del modelo
- Anotación generativa
- Estado de Dastaset
- Entrenamiento de modelos y mejores prácticas de anotación
- Entrenamiento con análisis de sentimiento de etiqueta habilitado
- Comprender los requisitos de datos
- Entrenamiento
- Introducción a Refinar
- Explicación de la precisión y la recuperación
- Precisión y recuperación
- Cómo funciona la validación
- Comprender y mejorar el rendimiento del modelo
- Razones para etiquetar una precisión media baja
- Entrenamiento utilizando la etiqueta Comprobar y la etiqueta Perdida
- Entrenamiento mediante la etiqueta de aprendizaje (refinar)
- Entrenamiento mediante Buscar (Refinar)
- Comprender y aumentar la cobertura
- Mejorar el equilibrio y utilizar Reequilibrar
- Cuándo dejar de entrenar tu modelo
- Uso de campos generales
- Extracción generativa
- Uso de análisis y supervisión
- Automations and Communications Mining™
- Desarrollador
- Uso de la API
- Tutorial de la API
- Fuentes
- Conjuntos de datos
- Comentarios
- Archivos adjuntos
- Predictions
- Crear una transmisión
- Actualizar una transmisión
- Obtener una transmisión por nombre
- Obtener todas las transmisiones
- Eliminar una transmisión
- Obtener resultados de la transmisión
- Obtener comentarios de una transmisión (heredado)
- Avanzar una transmisión
- Restablecer una transmisión
- Etiquetar una excepción
- Desetiquetar una excepción
- Eventos de auditoría
- Obtener todos los usuarios
- Cargar datos
- Descargando datos
- Integración de Exchange con el usuario del servicio de Azure
- Integración de Exchange con la autenticación de aplicaciones de Azure
- Integración de Exchange con Azure Application Authentication y Graph
- Obtener datos para Tableau con Python
- Integración de Elasticsearch
- Extracción de campos general
- Integración de Exchange autohospedado
- Marco de automatización de UiPath®
- Actividades oficiales de UiPath®
- Cómo aprenden las máquinas a entender palabras: una guía para las incrustaciones en PNL
- Aprendizaje basado en solicitudes con Transformers
- Efficient Transformers II: destilación de conocimientos y ajuste
- Transformadores eficientes I: mecanismos de atención
- Modelado de intenciones jerárquico profundo no supervisado: obtener valor sin datos de entrenamiento
- Corregir el sesgo de anotación con Communications Mining™
- Aprendizaje activo: mejores modelos ML en menos tiempo
- Todo está en los números: evaluar el rendimiento del modelo con métricas
- Por qué es importante la validación del modelo
- Comparación de Communications Mining™ y Google AutoML para la inteligencia de datos conversacional
- Licencia
- Preguntas frecuentes y más

Guía del usuario de Communications Mining
Cobertura es un término utilizado con frecuencia en el aprendizaje automático (ML) y se refiere a lo bien que un modelo cubre los datos que utilizó para analizar. En Communications Mining™, esto se relaciona con la proporción de mensajes en el conjunto de datos que tienen predicciones de etiquetas informativas, y se presenta en la página Validación como una puntuación porcentual.
Las etiquetas informativas son aquellas etiquetas que la plataforma considera útiles como etiquetas independientes, al observar la frecuencia con la que se asignan con otras etiquetas. Las etiquetas que siempre se asignan con otra etiqueta se ponderan hacia abajo cuando se calcula la puntuación. Por ejemplo, etiquetas principales que nunca se asignan por sí solas, o Urgente, si siempre se asigna con otra etiqueta.
El siguiente visual muestra cómo se vería la cobertura baja frente a la alta en todo un conjunto de datos. Imagina que los círculos sombreados son mensajes que tienen predicciones de etiquetas informativas:
Como métrica, la cobertura es una forma muy útil de comprender si has capturado todos los diferentes conceptos potenciales en tu conjunto de datos, y si has proporcionado suficientes ejemplos de entrenamiento variados para que la plataforma pueda predecirlos de forma efectiva.
En casi todos los casos, cuanto mayor sea la cobertura de un modelo, mejor será su rendimiento, pero no debes tenerlo en cuenta de forma aislada al comprobar el rendimiento del modelo.
También es muy importante que las etiquetas de la taxonomía sean saludables, lo que significa que tengan una precisión media alta y que no tengan otras advertencias de rendimiento, y que los datos de entrenamiento sean una representación equilibrada del conjunto de datos en su conjunto.
Si tus etiquetas no son saludables o los datos de entrenamiento no son representativos del conjunto de datos, la cobertura de tu modelo que calcula la plataforma no será fiable.
Que tu modelo tenga una alta cobertura es particularmente importante si lo utilizas para impulsar procesos automatizados.
Para obtener más información sobre la cobertura del modelo y cómo comprobar la cobertura de tu modelo, consulta Comprender y mejorar el rendimiento del modelo.