- Introducción
- Configuración de su cuenta
- Equilibrio
- Clústeres
- Deriva del concepto
- Cobertura
- Conjuntos de datos
- Campos generales
- Etiquetas (predicciones, niveles de confianza, jerarquía de etiquetas y sentimiento de etiqueta)
- Modelos
- Transmisiones
- Clasificación del modelo
- Proyectos
- Precisión
- Recordar
- Mensajes anotados y no anotados
- Campos extraídos
- Fuentes
- Taxonomías
- Formación
- Predicciones positivas y negativas verdaderas y falsas
- Validación
- Mensajes
- Control y administración de acceso
- Gestionar fuentes y conjuntos de datos
- Comprender la estructura de datos y los permisos
- Crear o eliminar un origen de datos en la GUI
- Cargar un archivo CSV en un origen
- Preparando datos para cargar archivos .CSV
- Crear un conjunto de datos
- Fuentes y conjuntos de datos multilingües
- Habilitar sentimiento en un conjunto de datos
- Modificar la configuración del conjunto de datos
- Eliminar un mensaje
- Eliminar un conjunto de datos
- Exportar un conjunto de datos
- Utilizar integraciones de Exchange
- Entrenamiento y mantenimiento de modelos
- Comprender las etiquetas, los campos generales y los metadatos
- Jerarquía de etiquetas y mejores prácticas
- Comparar casos de uso de análisis y automatización
- Convertir tus objetivos en etiquetas
- Descripción general del proceso de entrenamiento del modelo
- Anotación generativa
- Estado de Dastaset
- Entrenamiento de modelos y mejores prácticas de anotación
- Entrenamiento con análisis de sentimiento de etiqueta habilitado
- Chat de entrenamiento y datos de llamadas
- Comprender los requisitos de datos
- Entrenamiento
- Introducción a Refinar
- Explicación de la precisión y la recuperación
- Precisión y recuperación
- Cómo funciona la validación
- Comprender y mejorar el rendimiento del modelo
- Razones para etiquetar una precisión media baja
- Entrenamiento utilizando la etiqueta Comprobar y la etiqueta Perdida
- Entrenamiento mediante la etiqueta de aprendizaje (refinar)
- Entrenamiento mediante Buscar (Refinar)
- Comprender y aumentar la cobertura
- Mejorar el equilibrio y utilizar Reequilibrar
- Cuándo dejar de entrenar tu modelo
- Uso de campos generales
- Extracción generativa
- Uso de análisis y supervisión
- Automations and Communications Mining™
- Desarrollador
- Uso de la API
- Tutorial de la API
- Fuentes
- Conjuntos de datos
- Comentarios
- Archivos adjuntos
- Predictions
- Crear una transmisión
- Actualizar una transmisión
- Obtener una transmisión por nombre
- Obtener todas las transmisiones
- Eliminar una transmisión
- Obtener resultados de la transmisión
- Obtener comentarios de una transmisión (heredado)
- Avanzar una transmisión
- Restablecer una transmisión
- Etiquetar una excepción
- Desetiquetar una excepción
- Eventos de auditoría
- Obtener todos los usuarios
- Cargar datos
- Descargando datos
- Integración de Exchange con el usuario del servicio de Azure
- Integración de Exchange con la autenticación de aplicaciones de Azure
- Integración de Exchange con Azure Application Authentication y Graph
- Obtener datos para Tableau con Python
- Integración de Elasticsearch
- Extracción de campos general
- Integración de Exchange autohospedado
- Marco de automatización de UiPath®
- Actividades oficiales de UiPath®
- Cómo aprenden las máquinas a entender palabras: una guía para las incrustaciones en PNL
- Aprendizaje basado en solicitudes con Transformers
- Efficient Transformers II: destilación de conocimientos y ajuste
- Transformadores eficientes I: mecanismos de atención
- Modelado de intenciones jerárquico profundo no supervisado: obtener valor sin datos de entrenamiento
- Corregir el sesgo de anotación con Communications Mining™
- Aprendizaje activo: mejores modelos ML en menos tiempo
- Todo está en los números: evaluar el rendimiento del modelo con métricas
- Por qué es importante la validación del modelo
- Comparación de Communications Mining™ y Google AutoML para la inteligencia de datos conversacional
- Licencia
- Preguntas frecuentes y más

Guía del usuario de Communications Mining
Operación facturable
Se te cobrará 1 AI Unit o 0,2 Platform Units por comentario creado, o por comentario actualizado (en función de su ID único) si se ha modificado su texto.
La CLI te permite cargar comentarios (incluidos los comentarios preanotados) por lotes. Además de importar datos a Communications Mining™ en aquellos casos en los que no se requiere una conexión activa, puede utilizarse para cargar datos de entrenamiento preexistentes en Communications Mining, o para sobrescribir comentarios o etiquetas existentes en Communications Mining.
La CLI espera datos en formato JSONL (también llamado JSON delimitado por saltos de línea), donde cada línea es un valor JSON. Muchas herramientas podrán exportar archivos JSONL listos para usar. Póngase en contacto con el soporte técnico si tiene alguna pregunta.
Cada línea del archivo JSONL representa un objeto de comentario. Cada objeto de comentario debe tener al menos un ID único, una marca de tiempo y un fragmento de texto, pero puede tener otros campos como metadatos. Para saber qué campos establecer para tus datos, consulta la Referencia de comentarios.
Cada línea del archivo JSONL debe tener el siguiente formato (solo se muestran los campos obligatorios). (Ten en cuenta que esto se muestra con sangría para facilitar la lectura, pero debe estar todo en una línea en tu archivo).
{
"comment": {
"id": "<unique id>",
"timestamp": "<timestamp>",
"messages": [
{
"body": {
"text": "<text of the comment>"
}
}
]
}
}
{
"comment": {
"id": "<unique id>",
"timestamp": "<timestamp>",
"messages": [
{
"body": {
"text": "<text of the comment>"
}
}
]
}
}
Si desea cargar etiquetas junto con los comentarios, puede incluirlos así (al igual que se mencionó anteriormente, esto se muestra con sangría para facilitar la lectura, pero debe estar todo en una línea en su archivo):
{
"comment": {
"id": "<unique id>",
"timestamp": "<timestamp>",
"messages": [
{
"body": {
"text": "<text of the comment>"
}
}
]
},
"labelling": {
"assigned": [
{
"name": "<Your Label Name>",
"sentiment": "<positive|negative>"
},
{
"name": "<Another Label Name>",
"sentiment": "<positive|negative>"
}
]
}
}
{
"comment": {
"id": "<unique id>",
"timestamp": "<timestamp>",
"messages": [
{
"body": {
"text": "<text of the comment>"
}
}
]
},
"labelling": {
"assigned": [
{
"name": "<Your Label Name>",
"sentiment": "<positive|negative>"
},
{
"name": "<Another Label Name>",
"sentiment": "<positive|negative>"
}
]
}
}
Cargar comentarios
The following command will upload comments to the specified source. We recommend to upload comments into a new empty source, as it makes rolling back easier if something went wrong - you just delete the source.
re create comments \
--source <project_name/source_name> \
--file <file_name.jsonl>
re create comments \
--source <project_name/source_name> \
--file <file_name.jsonl>
--overwrite
. Los comentarios se sobrescribirán en función del campo comment.id
. Te recomendamos que hagas una copia de seguridad del origen antes de actualizar los comentarios para poder recuperar los comentarios originales si algo sale mal.
Cargar comentarios con etiquetas
Si desea cargar etiquetas junto con sus comentarios, debe especificar un conjunto de datos en el que se deben cargar las etiquetas. El conjunto de datos debe estar conectado a la fuente antes de comenzar a cargar.
re create comments \
--source <project_name/source_name> \
--dataset <project_name/dataset_name> \
--file <file_name.jsonl>
re create comments \
--source <project_name/source_name> \
--dataset <project_name/dataset_name> \
--file <file_name.jsonl>
--overwrite
. Ten en cuenta que esto reemplazará las etiquetas existentes por etiquetas nuevas (no añadirá etiquetas existentes a etiquetas nuevas). Te recomendamos que hagas una copia de seguridad del conjunto de datos antes de sobrescribir las etiquetas para poder recuperar las etiquetas originales si algo sale mal.