communications-mining
latest
false
Important :
Ce contenu a été traduit à l'aide d'une traduction automatique.
Guide de l'utilisateur de Communications Mining
Last updated 7 nov. 2024

Équilibre

«Équilibre » est un terme utilisé pour décrire la manière dont les données d'entraînement d'un modèle représentent l'ensemble de données dans son ensemble.

Lorsque la plate-forme évalue l' équilibre d'un modèle, elle recherche essentiellement le biais d'annotation qui peut provoquer un équilibre entre les données d'entraînement et l'ensemble de données dans son ensemble.

Pour ce faire, il utilise un modèle de biais d'annotation qui compare les données examinées et non examinées pour s'assurer que les données annotées sont représentatives de l'ensemble de données. Si les données ne sont pas représentatives, les mesures de performances du modèle peuvent être trompeurs et potentiellement peu fiables.

Le biais d'annotation est généralement le résultat d'un basculement des modes d'apprentissage utilisés pour attribuer des libellés, surtout si trop de « recherche de texte » sont utilisées et pas assez de « Shouldy ».

Le mode d'entraînement «Rééquilibrer » affiche les messages sous-représentés dans l'ensemble révisé. L'annotation des exemples dans ce mode aidera à corriger rapidement les équilibres dans l'ensemble de données.

Cette page vous a-t-elle été utile ?

Obtenez l'aide dont vous avez besoin
Formation RPA - Cours d'automatisation
Forum de la communauté UiPath
Uipath Logo White
Confiance et sécurité
© 2005-2024 UiPath Tous droits réservés.