communications-mining
latest
false
- Démarrage
- Équilibre
- Clusters
- Dérive de concept
- Couverture
- Jeux de données
- Champs généraux (anciennement entités)
- Libellés (prédictions, niveaux de confiance, hiérarchie, etc.)
- Modèles
- Flux
- Évaluation du modèle
- Projets
- Précision
- Rappel
- Messages examinés et non examinés
- Sources
- Taxonomies
- Apprentissage
- Prédictions positives et négatives vraies et fausses
- Validation
- Messages
- Administration
- Gérer les sources et les jeux de données
- Comprendre la structure des données et les autorisations
- Create or delete a data source in the GUI
- Téléchargement d’un fichier CSV dans une source
- Préparation des données en vue du téléchargement du fichier .CSV
- Créer un nouveau jeu de données
- Sources et jeux de données multilingues
- Activation des sentiments sur un ensemble de données
- Modifier les paramètres d’un jeu de données
- Supprimer des messages via l'interface utilisateur
- Supprimer un jeu de données
- Exporter un jeu de données
- Utilisation des intégrations Exchange
- Entraînement et maintenance du modèle
- Comprendre les libellés, les champs généraux et les métadonnées
- Hiérarchie des libellés et bonnes pratiques
- Définition de vos objectifs de taxonomie
- Cas d'utilisation d'analyse vs d'automatisation
- Transformer vos objectifs en libellés
- Construire votre structure de taxonomie
- Meilleures pratiques de conception de taxonomie
- Importation de votre taxonomie
- Présentation du processus d'entraînement du modèle
- Annotation générative (New)
- Statut du jeu de données
- Entraînement des modèles et annotation des meilleures pratiques
- Entraînement avec l'analyse des sentiments des libellés activée
- Comprendre les exigences de données
- Entraîner
- Vue d'ensemble (Overview)
- Examen des prédictions de libellé
- Entraînement à l'aide de la classification par glisser-déposer
- Entraînement à l'aide de l'option Enseigner le libellé (Explore)
- Entraînement à l'aide d'une confiance faible
- Entraînement à l'aide de la recherche (Explorer)
- Réduction et réorganisation de votre taxonomie
- Introduction à affiner
- Précision et rappel expliqués
- Précision et rappel
- Comment fonctionne la validation ?
- Comprendre et améliorer les performances du modèle
- Pourquoi un libellé peut-il avoir une précision moyenne faible ?
- Entraînement à l'aide du libellé Vérifier (Check label) et du libellé Manqué (Missed Label)
- Entraînement à l'aide du libellé En savoir plus (Affiner)
- Entraînement à l'aide de la recherche (affiner)
- Comprendre et augmenter la couverture
- Amélioration de l'équilibre et utilisation du rééquilibrage
- Quand arrêter l'entraînement de votre modèle
- Utilisation de champs généraux
- Extraction générative
- Utilisation des analyses et de la surveillance
- Automatisations et Communications Mining
- Informations de licence
- FAQ et plus encore
Meilleures pratiques de conception de taxonomie
Important :
Ce contenu a été traduit à l'aide d'une traduction automatique.
Guide de l'utilisateur de Communications Mining
Dernière mise à jour 20 déc. 2024
Meilleures pratiques de conception de taxonomie
Éléments de taxonomie clés
-
Number of labels: Typical datasets have 50-100 labels, but this number can vary depending on the objectives for a dataset. An effective use case can have much fewer than 50 labels. The system imposes a limit of 200 labels for a dataset because beyond this point, the taxonomy becomes very difficult to manage and train, and it leads to reduced performance.
- Label names: Label names should be concise and descriptive because the Generative Annotation feature uses them as a training input to speed up and improve the training process. You can always edit them, but to ensure they display effectively in the platform UI, a character limit of 64 characters is set for any given label, including its levels of hierarchy.
- Label descriptions: Add natural language descriptions to your labels because they are used as a training input by the Generative Annotation feature for automatic training. Descriptions also help ensure annotating consistency among model trainers and provide helpful context to others viewing the dataset for analytical purposes.
Structurer votre taxonomie
Nous vous recommandons de suivre ces meilleures pratiques pour structurer correctement votre taxonomie et garantir les performances élevées du modèle :
- Align with objectives: Make sure each label serves a specific business purpose and is aligned to your defined objectives. If your dataset is meant for automation, many labels should match the specific requests needed for downstream processing. If your dataset is meant for analytics (or both), include additional labels that cover concepts like issue types, root causes, and quality of service issues such as chaser messages, escalations, and disputes.
- Be distinct: Each label should be specific and not overlap with other labels.
- Be specific: Avoid broad, vague, or confusing concepts, as they are more likely to perform poorly and provide less business value. Split broad labels into multiple distinct labels if possible. Start with specific labels, such as more levels of hierarchy, and merge them later if needed, rather than breaking down broad labels manually.
- Be identifiable: Ensure each label is clearly identifiable from the text of the messages it is applied to.
- Use parent labels: If you expect to have many similar concepts related to a broader topic, use a parent label.
- Use child labels:Make sure that every label nested under another label is a subset of that label.
- Limit hierarchy levels: Try not to add more than four levels of hierarchy, as the model becomes increasingly complex to train.
- Include uninformative labls: Create some non-value-adding labels, such as thank-you emails, so you can tell the platform what is or isn’t important to analyze.