communications-mining
latest
false
- Primeros pasos
- Equilibrio
- Clústeres
- Deriva del concepto
- Cobertura
- Conjuntos de datos
- Campos generales (anteriormente entidades)
- Etiquetas (predicciones, niveles de confianza, jerarquía, etc.)
- Modelos
- Transmisiones
- Clasificación del modelo
- Proyectos
- Precisión
- Recordar
- Mensajes revisados y no revisados
- Fuentes
- Taxonomías
- Formación
- Predicciones positivas y negativas verdaderas y falsas
- Validación
- Mensajes
- Administración
- Gestionar fuentes y conjuntos de datos
- Comprender la estructura de datos y los permisos
- Create or delete a data source in the GUI
- Cargar un archivo CSV en un origen
- Preparando datos para cargar archivos .CSV
- Crear un nuevo conjunto de datos
- Fuentes y conjuntos de datos multilingües
- Habilitar sentimiento en un conjunto de datos
- Modificar la configuración de un conjunto de datos
- Eliminar mensajes a través de la IU
- Eliminar un conjunto de datos
- Exportar un conjunto de datos
- Uso de integraciones de Exchange
- Entrenamiento y mantenimiento de modelos
- Comprender las etiquetas, los campos generales y los metadatos
- Jerarquía de etiquetas y mejores prácticas
- Definición de los objetivos de taxonomía
- Casos de uso de análisis frente a automatización
- Convertir tus objetivos en etiquetas
- Crear tu estructura de taxonomía
- Mejores prácticas de diseño de taxonomía
- Importar tu taxonomía
- Descripción general del proceso de entrenamiento del modelo
- Anotación generativa (NUEVO)
- Estado de Dastaset
- Entrenamiento de modelos y mejores prácticas de anotación
- Entrenamiento con análisis de sentimiento de etiqueta habilitado
- Comprender los requisitos de datos
- Entrenamiento
- Introducción a Refinar
- Explicación de la precisión y la recuperación
- Precisión y recuperación
- ¿Cómo funciona la validación?
- Comprender y mejorar el rendimiento del modelo
- ¿Por qué una etiqueta puede tener una precisión media baja?
- Entrenamiento utilizando la etiqueta Comprobar y la etiqueta Perdida
- Entrenamiento mediante la etiqueta de aprendizaje (refinar)
- Entrenamiento mediante Buscar (Refinar)
- Comprender y aumentar la cobertura
- Mejorar el equilibrio y utilizar Reequilibrar
- Cuándo dejar de entrenar tu modelo
- Uso de campos generales
- Extracción generativa
- Uso de análisis y supervisión
- Minería de automatizaciones y comunicaciones
- Información de licencia
- Preguntas frecuentes y más
Mejores prácticas de diseño de taxonomía
Importante :
Este contenido se ha traducido mediante traducción automática.
Guía de usuario de Communications Mining
Última actualización 20 de dic. de 2024
Mejores prácticas de diseño de taxonomía
Elementos clave de la taxonomía
-
Number of labels: Typical datasets have 50-100 labels, but this number can vary depending on the objectives for a dataset. An effective use case can have much fewer than 50 labels. The system imposes a limit of 200 labels for a dataset because beyond this point, the taxonomy becomes very difficult to manage and train, and it leads to reduced performance.
- Label names: Label names should be concise and descriptive because the Generative Annotation feature uses them as a training input to speed up and improve the training process. You can always edit them, but to ensure they display effectively in the platform UI, a character limit of 64 characters is set for any given label, including its levels of hierarchy.
- Label descriptions: Add natural language descriptions to your labels because they are used as a training input by the Generative Annotation feature for automatic training. Descriptions also help ensure annotating consistency among model trainers and provide helpful context to others viewing the dataset for analytical purposes.
Estructurar su taxonomía
Recomendamos seguir estas mejores prácticas para estructurar tu taxonomía correctamente y garantizar un alto rendimiento del modelo:
- Align with objectives: Make sure each label serves a specific business purpose and is aligned to your defined objectives. If your dataset is meant for automation, many labels should match the specific requests needed for downstream processing. If your dataset is meant for analytics (or both), include additional labels that cover concepts like issue types, root causes, and quality of service issues such as chaser messages, escalations, and disputes.
- Be distinct: Each label should be specific and not overlap with other labels.
- Be specific: Avoid broad, vague, or confusing concepts, as they are more likely to perform poorly and provide less business value. Split broad labels into multiple distinct labels if possible. Start with specific labels, such as more levels of hierarchy, and merge them later if needed, rather than breaking down broad labels manually.
- Be identifiable: Ensure each label is clearly identifiable from the text of the messages it is applied to.
- Use parent labels: If you expect to have many similar concepts related to a broader topic, use a parent label.
- Use child labels:Make sure that every label nested under another label is a subset of that label.
- Limit hierarchy levels: Try not to add more than four levels of hierarchy, as the model becomes increasingly complex to train.
- Include uninformative labls: Create some non-value-adding labels, such as thank-you emails, so you can tell the platform what is or isn’t important to analyze.