- Primeros pasos
- Equilibrio
- Clústeres
- Deriva del concepto
- Cobertura
- Conjuntos de datos
- Campos generales (anteriormente entidades)
- Etiquetas (predicciones, niveles de confianza, jerarquía, etc.)
- Modelos
- Transmisiones
- Clasificación del modelo
- Proyectos
- Precisión
- Recordar
- Mensajes revisados y no revisados
- Fuentes
- Taxonomías
- Formación
- Predicciones positivas y negativas verdaderas y falsas
- Validación
- Mensajes
- Administración
- Gestionar fuentes y conjuntos de datos
- Comprender la estructura de datos y los permisos
- Crear un origen de datos en la GUI
- Cargar un archivo CSV en un origen
- Crear un nuevo conjunto de datos
- Fuentes y conjuntos de datos multilingües
- Habilitar sentimiento en un conjunto de datos
- Modificar la configuración de un conjunto de datos
- Eliminar mensajes a través de la IU
- Eliminar un conjunto de datos
- Exportar un conjunto de datos
- Uso de integraciones de Exchange
- Preparando datos para cargar archivos .CSV
- Entrenamiento y mantenimiento de modelos
- Comprender las etiquetas, los campos generales y los metadatos
- Jerarquía de etiquetas y mejores prácticas
- Definición de los objetivos de taxonomía
- Casos de uso de análisis frente a automatización
- Convertir tus objetivos en etiquetas
- Crear tu estructura de taxonomía
- Mejores prácticas de diseño de taxonomía
- Importar tu taxonomía
- Descripción general del proceso de entrenamiento del modelo
- Anotación generativa (NUEVO)
- Comprender el estado de tu conjunto de datos
- Entrenamiento de modelos y mejores prácticas de anotación
- Entrenamiento con análisis de sentimiento de etiqueta habilitado
- Entrenamiento
- Introducción a Refinar
- Explicación de la precisión y la recuperación
- Precisión y recuperación
- ¿Cómo funciona la validación?
- Comprender y mejorar el rendimiento del modelo
- ¿Por qué una etiqueta puede tener una precisión media baja?
- Entrenamiento utilizando la etiqueta Comprobar y la etiqueta Perdida
- Entrenamiento mediante la etiqueta de aprendizaje (refinar)
- Entrenamiento mediante Buscar (Refinar)
- Comprender y aumentar la cobertura
- Mejorar el equilibrio y utilizar Reequilibrar
- Cuándo dejar de entrenar tu modelo
- Uso de campos generales
- Extracción generativa
- Uso de análisis y supervisión
- Minería de automatizaciones y comunicaciones
- Información de licencia
- Preguntas frecuentes y más
Cobertura
La cobertura es un término que se utiliza con frecuencia en el aprendizaje automático y se refiere a lo bien que un modelo "cubre" los datos que se utilizan para analizar. En Communications Mining™, esto se relaciona con la proporción de mensajes en el conjunto de datos que tienen predicciones de etiquetas informativas, y se presenta en Validación como una puntuación porcentual.
Las "etiquetas informativas " son aquellas etiquetas que la plataforma considera útiles como etiquetas independientes, al observar la frecuencia con la que se asignan a otras etiquetas. Etiquetas que siempre se asignan con otra etiqueta, por ejemplo las etiquetas principales que nunca se asignan por sí solas o "Urgente" si siempre se asigna con otra etiqueta, se ponderan a la baja cuando se calcula la puntuación.
La siguiente imagen muestra cómo sería la cobertura baja frente a la cobertura alta en todo un conjunto de datos. Imagina que los círculos sombreados son mensajes que tienen predicciones de etiquetas informativas.
Como métrica, la cobertura es una forma muy útil de entender si has capturado todos los diferentes conceptos potenciales en tu conjunto de datos, y si has proporcionado suficientes ejemplos de entrenamiento variados para que la plataforma pueda predecirlos de forma efectiva.
En casi todos los casos, cuanto mayor sea la cobertura de un modelo, mejor será su rendimiento, pero no debe considerarse de forma aislada al comprobar el rendimiento del modelo.
También es muy importante que las etiquetas de la taxonomía sean saludables, lo que significa que tengan una precisión media alta y no tengan otras advertencias de rendimiento, y que los datos de entrenamiento sean una representación equilibrada del conjunto de datos en su conjunto.
Si tus etiquetas no son saludables o los datos de entrenamiento no son representativos del conjunto de datos, entonces la cobertura de tu modelo que calcula la plataforma no será fiable.
Que tu modelo tenga una alta cobertura es especialmente importante si lo utilizas para impulsar procesos automatizados.
Para obtener más información sobre la cobertura del modelo y cómo comprobar la cobertura de tu modelo, consulta aquí.