ixp
latest
false
- Introdução
- Configurando sua conta
- Balanceamento
- Clusters
- Desvio de conceito
- Cobertura
- Conjuntos de dados
- Campos gerais
- Rótulos (previsões, níveis de confiança, hierarquia do rótulo e sentimento do rótulo)
- Modelos
- Transmissões
- Classificação do Modelo
- Projetos
- Precisão
- Lembrar
- Mensagens anotadas e não anotadas
- Campos de extração
- Fontes
- Taxonomias
- Treinamento
- Previsões positivos e negativos verdadeiros e falsos
- Validação
- Mensagens
- Controle de acesso e administração
- Gerencie origens e conjuntos de dados
- Entender a estrutura de dados e permissões
- Criando ou excluindo uma origem de dados na GUI
- Carregar um arquivo CSV para uma origem
- Preparando dados para carregamento de .CSV
- Criação de um conjunto de dados
- Origens e conjuntos de dados multilíngues
- Habilitando o sentimento em um conjunto de dados
- Como corrigir as configurações do conjunto de dados
- Excluindo uma mensagem
- Exclusão de um conjunto de dados
- Exportação de um conjunto de dados
- Usando integrações do Exchange
- Treinamento e manutenção do modelo
- Noções Básicas sobre rótulos, campos gerais e metadados
- Hierarquia de rótulos e práticas recomendadas
- Comparação de casos de uso de análise e automação
- Transformando seus objetivos em rótulos
- Visão geral do processo de treinamento do modelo
- Anotação generativa
- Status do conjunto de dados
- Treinamento de modelos e práticas recomendadas de anotação
- Treinamento com análise de sentimento de rótulo habilitada
- Dados de chamadas e chat de treinamento
- Compreensão dos requisitos de dados
- Treinamento
- Introdução ao Refine
- Precisão e recall explicados
- Precisão e recall
- Como a validação funciona
- Compreender e melhorar o desempenho do modelo
- Motivos para baixa precisão média do rótulo
- Treinamento usando Check label e Perda de rótulo
- Treinamento usando Ensinar rótulo (Refinar)
- Treinamento usando a Pesquisa (Refinamento)
- Noções Básicas e Aumentando a Cobertura
- Melhorando o balanceamento e usando o Rebalanceamento
- Quando parar de treinar seu modelo
- Uso dos campos gerais
- Extração generativa
- Uso de análise e monitoramento
- Automations e Communications Mining™
- Desenvolvedor
- Carregamento de dados
- Baixando dados
- Integração do Exchange com Autenticação de Aplicativo do Azure
- Integração do Exchange com Autenticação de aplicativo e gráfico do Azure
- Como buscar dados para o Tableau com o Python
- Integração do Elasticsearch
- Configuração de campos gerais
- Uso de campos gerais em seu aplicativo
- Integração auto-hospedada do Exchange
- Framework de automação da UiPath®
- Atividades do UiPath® Marketplace
- Atividades oficiais da UiPath®
- Como as máquinas aprendem a entender as palavras: um guia para incorporações ao NLP
- Aprendizado baseado em solicitação com Transformers
- Efficient Transformers II: extração de conhecimento e ajustes finos
- Transformers eficientes I: mecanismos de atenção
- Modelagem de intenção hierárquica profunda não supervisionada: obtenção de valor sem dados de treinamento
- Corrigindo viés de anotação com o Communications Mining™
- Aprendizado ativo: melhores modelos de ML em menos tempo
- Está tudo nos números - avaliando o desempenho do modelo com métricas
- Por que a validação de modelos é importante
- Comparação do Communications Mining™ e do Google AutoML para inteligência de dados de conversa
- Licenciamento
- Perguntas frequentes e mais

Guia do usuário do Communications Mining
Última atualização 6 de out de 2025
O Communications Mining™ fornece várias maneiras de buscar previsões, incluindo campos gerais previstos. Consulte a visão geral do download de dados para entender qual método funcionará melhor no seu caso de uso.
Seja qual for o método escolhido, você precisa estar ciente dos seguintes casos extremos e lidar com eles em seu aplicativo:
- Nem todos os campos gerais esperados estão presentes na resposta
- A resposta contém várias correspondências para um ou mais campos gerais
- Nem todos os campos gerais presentes na resposta estão corretos
Nesta seção, examinamos cada um desses casos extremos com mais detalhes.
You should expect to handle cases where not all expected general fields are present. In the following example, the email has the policy number, but doesn't have the insured organization name. Your application should be able to handle such partial information.
Figura 1. Organização segurada não encontrada
You should also expect to handle the opposite of the previous case, namely cases where a comment has more general fields than expected. In the following example, even though we expect one policy number and insured organization name per email, the email has multiple policy numbers.
Figura 2. Várias correspondências para o mesmo campo Geral
Note that you can use the metadata in the response when handling such cases. For example, we can choose to preferentially pick policy numbers that appear in the email subject over those that appear in the email body. The following example shows the response that the API will return for our example email.
{
"predictions": [
{
"uid": "aa05ba2250de48e3.7588b85f68f81c3b",
"labels": [...],
"entities": [
{
"id": "6a1d11118b60868e",
"name": "policy-number",
"span": {
"content_part": "body",
"message_index": 0,
"utf16_byte_start": 200,
"utf16_byte_end": 222,
"char_start": 100,
"char_end": 111
},
"kind": "policy-number",
"formatted_value": "GHI-0204963"
},
{
"id": "6a1d11118b60868e",
"name": "policy-number",
"span": {
"content_part": "subject",
"message_index": 0,
"utf16_byte_start": 0,
"utf16_byte_end": 22,
"char_start": 0,
"char_end": 11
},
"kind": "policy-number",
"formatted_value": "GHI-0068448"
},
{...},
{...},
{...}
]
}
],
"model": {
"version": 31,
"time": "2021-07-14T15:00:57.608000Z"
},
"status": "ok"
}{
"predictions": [
{
"uid": "aa05ba2250de48e3.7588b85f68f81c3b",
"labels": [...],
"entities": [
{
"id": "6a1d11118b60868e",
"name": "policy-number",
"span": {
"content_part": "body",
"message_index": 0,
"utf16_byte_start": 200,
"utf16_byte_end": 222,
"char_start": 100,
"char_end": 111
},
"kind": "policy-number",
"formatted_value": "GHI-0204963"
},
{
"id": "6a1d11118b60868e",
"name": "policy-number",
"span": {
"content_part": "subject",
"message_index": 0,
"utf16_byte_start": 0,
"utf16_byte_end": 22,
"char_start": 0,
"char_end": 11
},
"kind": "policy-number",
"formatted_value": "GHI-0068448"
},
{...},
{...},
{...}
]
}
],
"model": {
"version": 31,
"time": "2021-07-14T15:00:57.608000Z"
},
"status": "ok"
}Por fim, como os campos gerais são extraídos usando aprendizado de máquina, você deve esperar receber correspondências erradas. O número de correspondências erradas dependerá do campo geral que você está usando. A página Validação de seu conjunto de dados fornece estatísticas de validação para entender como um campo geral será executado.
Figura 3. Validação de campo geral