- Introdução
- Configurando sua conta
 - Balanceamento
 - Clusters
 - Desvio de conceito
 - Cobertura
 - Conjuntos de dados
 - Campos gerais
 - Rótulos (previsões, níveis de confiança, hierarquia do rótulo e sentimento do rótulo)
 - Modelos
 - Transmissões
 - Classificação do Modelo
 - Projetos
 - Precisão
 - Lembrar
 - Mensagens anotadas e não anotadas
 - Campos de extração
 - Fontes
 - Taxonomias
 - Treinamento
 - Previsões positivos e negativos verdadeiros e falsos
 - Validação
 - Mensagens
 
 - Controle de acesso e administração
 - Gerencie origens e conjuntos de dados
- Entender a estrutura de dados e permissões
 - Criando ou excluindo uma origem de dados na GUI
 - Carregar um arquivo CSV para uma origem
 - Preparando dados para carregamento de .CSV
 - Criação de um conjunto de dados
 - Origens e conjuntos de dados multilíngues
 - Habilitando o sentimento em um conjunto de dados
 - Como corrigir as configurações do conjunto de dados
 - Excluindo uma mensagem
 - Exclusão de um conjunto de dados
 - Exportação de um conjunto de dados
 - Usando integrações do Exchange
 
 - Treinamento e manutenção do modelo
- Noções Básicas sobre rótulos, campos gerais e metadados
 - Hierarquia de rótulos e práticas recomendadas
 - Comparação de casos de uso de análise e automação
 - Transformando seus objetivos em rótulos
 - Visão geral do processo de treinamento do modelo
 - Anotação generativa
 - Status do conjunto de dados
 - Treinamento de modelos e práticas recomendadas de anotação
 - Treinamento com análise de sentimento de rótulo habilitada
 
- Compreensão dos requisitos de dados
 - Treinamento
 - Introdução ao Refine
 - Precisão e recall explicados
 - Precisão e recall
 - Como a validação funciona
 - Compreender e melhorar o desempenho do modelo
 - Motivos para baixa precisão média do rótulo
 - Treinamento usando Check label e Perda de rótulo
 - Treinamento usando Ensinar rótulo (Refinar)
 - Treinamento usando a Pesquisa (Refinamento)
 - Noções Básicas e Aumentando a Cobertura
 - Melhorando o balanceamento e usando o Rebalanceamento
 - Quando parar de treinar seu modelo
 
- Uso dos campos gerais
 
 - Extração generativa
 - Uso de análise e monitoramento
 - Automations e Communications Mining™
 - Desenvolvedor
- Carregamento de dados
 - Baixando dados
 - Integração do Exchange com usuário do serviço do Azure
 - Integração do Exchange com Autenticação de Aplicativo do Azure
 - Integração do Exchange com Autenticação de aplicativo e gráfico do Azure
 - Como buscar dados para o Tableau com o Python
 - Integração do Elasticsearch
 - Extração de campo geral
 - Integração auto-hospedada do Exchange
 - Framework de automação da UiPath®
 - Atividades oficiais da UiPath®
 
- Como as máquinas aprendem a entender as palavras: um guia para incorporações ao NLP
 - Aprendizado baseado em solicitação com Transformers
 - Efficient Transformers II: extração de conhecimento e ajustes finos
 - Transformers eficientes I: mecanismos de atenção
 - Modelagem de intenção hierárquica profunda não supervisionada: obtenção de valor sem dados de treinamento
 - Corrigindo viés de anotação com o Communications Mining™
 - Aprendizado ativo: melhores modelos de ML em menos tempo
 - Está tudo nos números - avaliando o desempenho do modelo com métricas
 - Por que a validação de modelos é importante
 - Comparação do Communications Mining™ e do Google AutoML para inteligência de dados de conversa
 
 - Licenciamento
 - Perguntas frequentes e mais
 

Guia do usuário do Communications Mining
A precisão mede a proporção de previsões que o modelo faz que estavam realmente corretas. Isso significa que identifica qual proporção era de verdadeiros positivos de todas as previsões positivas que o modelo fez.
Precisão = verdadeiros positivos / (verdadeiros positivos + falsos positivos)
Por exemplo, para cada 100 mensagens em um conjunto de dados prevista como tendo o rótulo Solicitação de informação, a precisão é a porcentagem de vezes que a Solicitação de informação foi prevista corretamente fora do total de vezes em que foi prevista.
Uma precisão de 95% significaria que, para cada 100 mensagens previstas como tendo um rótulo específico, 95 seriam anotadas corretamente e 5 serão anotadas incorretamente, o que significa que elas não deveriam ter sido anotadas com esse rótulo.
Para uma explicação mais detalhada sobre como funciona a precisão, consulte Precisão e recall explicados.
A pontuação AP para um rótulo individual é calculada como a média de todas as pontuações de precisão em cada valor de recall, entre 0 e 100%, para esse rótulo.
Essencialmente, a precisão média mede o desempenho do modelo em todos os limites de confiança para esse rótulo.
MAP é uma das medidas mais úteis do desempenho geral do modelo e é uma maneira fácil de comparar diferentes versões de modelo entre si.
A pontuação do MAP leva a média da pontuação de precisão média para cada rótulo em sua taxonomia que tenha pelo menos 20 exemplos no conjunto de treinamento usado na Validação.
Normalmente, quanto maior a pontuação do MAP, melhor o desempenho do modelo em geral, embora esse não seja o único fator que deve ser considerado ao entender o quão íntegro é um modelo. Também é importante saber que seu modelo é imparcial e tem alta cobertura.