ixp
latest
false
- Introdução
- Configurando sua conta
- Balanceamento
- Clusters
- Desvio de conceito
- Cobertura
- Conjuntos de dados
- Campos gerais
- Rótulos (previsões, níveis de confiança, hierarquia do rótulo e sentimento do rótulo)
- Modelos
- Transmissões
- Classificação do Modelo
- Projetos
- Precisão
- Lembrar
- Mensagens anotadas e não anotadas
- Campos de extração
- Fontes
- Taxonomias
- Treinamento
- Previsões positivos e negativos verdadeiros e falsos
- Validação
- Mensagens
- Controle de acesso e administração
- Gerencie origens e conjuntos de dados
- Entender a estrutura de dados e permissões
- Criando ou excluindo uma origem de dados na GUI
- Carregar um arquivo CSV para uma origem
- Preparando dados para carregamento de .CSV
- Criação de um conjunto de dados
- Origens e conjuntos de dados multilíngues
- Habilitando o sentimento em um conjunto de dados
- Como corrigir as configurações do conjunto de dados
- Excluindo uma mensagem
- Exclusão de um conjunto de dados
- Exportação de um conjunto de dados
- Usando integrações do Exchange
- Treinamento e manutenção do modelo
- Noções Básicas sobre rótulos, campos gerais e metadados
- Hierarquia de rótulos e práticas recomendadas
- Comparação de casos de uso de análise e automação
- Transformando seus objetivos em rótulos
- Visão geral do processo de treinamento do modelo
- Anotação generativa
- Status do conjunto de dados
- Treinamento de modelos e práticas recomendadas de anotação
- Treinamento com análise de sentimento de rótulo habilitada
- Compreensão dos requisitos de dados
- Treinamento
- Introdução ao Refine
- Precisão e recall explicados
- Precisão e recall
- Como a validação funciona
- Compreender e melhorar o desempenho do modelo
- Motivos para baixa precisão média do rótulo
- Treinamento usando Check label e Perda de rótulo
- Treinamento usando Ensinar rótulo (Refinar)
- Treinamento usando a Pesquisa (Refinamento)
- Noções Básicas e Aumentando a Cobertura
- Melhorando o balanceamento e usando o Rebalanceamento
- Quando parar de treinar seu modelo
- Fixação e marcação com tags de uma versão de modelo
- Excluindo um modelo fixado
- Adição de novos rótulos às taxonomias existentes
- Manutenção de um modelo em produção
- Reverter modelo
- Uso dos campos gerais
- Extração generativa
- Uso de análise e monitoramento
- Automations e Communications Mining™
- Desenvolvedor
- Carregamento de dados
- Baixando dados
- Integração do Exchange com usuário do serviço do Azure
- Integração do Exchange com Autenticação de Aplicativo do Azure
- Integração do Exchange com Autenticação de aplicativo e gráfico do Azure
- Como buscar dados para o Tableau com o Python
- Integração do Elasticsearch
- Extração de campo geral
- Integração auto-hospedada do Exchange
- Framework de automação da UiPath®
- Atividades oficiais da UiPath®
- Como as máquinas aprendem a entender as palavras: um guia para incorporações ao NLP
- Aprendizado baseado em solicitação com Transformers
- Efficient Transformers II: extração de conhecimento e ajustes finos
- Transformers eficientes I: mecanismos de atenção
- Modelagem de intenção hierárquica profunda não supervisionada: obtenção de valor sem dados de treinamento
- Corrigindo viés de anotação com o Communications Mining™
- Aprendizado ativo: melhores modelos de ML em menos tempo
- Está tudo nos números - avaliando o desempenho do modelo com métricas
- Por que a validação de modelos é importante
- Comparação do Communications Mining™ e do Google AutoML para inteligência de dados de conversa
- Licenciamento
- Perguntas frequentes e mais

Guia do usuário do Communications Mining
Última atualização 20 de out de 2025
Observação: você deve ter atribuído as permissões Origem - Leitura e Conjunto de dados - Leitura como usuário do Automation Cloud ou as permissões Visualizar origens e Visualizar rótulos como um usuário legado.
Toda vez que você treina a plataforma em seus dados, ou seja, anotando qualquer mensagem, uma nova versão do modelo associado ao seu conjunto de dados é criada. Como esses modelos são grandes e complexos, as versões anteriores não são armazenadas automaticamente em nossos bancos de dados, simplesmente porque os requisitos de armazenamento seriam incrivelmente grandes.
A versão mais recente do modelo sempre estará prontamente disponível, mas os usuários podem fixar uma versão específica do modelo que gostariam de salvar. Eles também podem optar por marcar modelos fixados com uma tag Live ou Staging .
- Fixar um modelo fornece determinismo sobre previsões, especialmente para quando você está usando Streams. Isso significa que você pode ter confiança nas pontuações de precisão e recall para esta versão do modelo, e os eventos de treinamento futuros não as alterarão.
- Na página Validação , você pode visualizar as pontuações de validação para versões anteriores do modelo fixado. Isso permite que você compare as pontuações ao longo do tempo e observe como seu treinamento melhorou seu modelo.
Para fixar uma versão de modelo:
- Navegue até a página modelos usando a barra de navegação.
- Selecione a alternância do PIN para salvar a versão do modelo atual.