- Introdução
- Configurando sua conta
- Balanceamento
- Clusters
- Desvio de conceito
- Cobertura
- Conjuntos de dados
- Campos gerais
- Rótulos (previsões, níveis de confiança, hierarquia do rótulo e sentimento do rótulo)
- Modelos
- Transmissões
- Classificação do Modelo
- Projetos
- Precisão
- Lembrar
- Mensagens anotadas e não anotadas
- Campos de extração
- Fontes
- Taxonomias
- Treinamento
- Previsões positivos e negativos verdadeiros e falsos
- Validação
- Mensagens
- Controle de acesso e administração
- Gerencie origens e conjuntos de dados
- Entender a estrutura de dados e permissões
- Criando ou excluindo uma origem de dados na GUI
- Carregar um arquivo CSV para uma origem
- Preparando dados para carregamento de .CSV
- Criação de um conjunto de dados
- Origens e conjuntos de dados multilíngues
- Habilitando o sentimento em um conjunto de dados
- Como corrigir as configurações do conjunto de dados
- Excluindo uma mensagem
- Exclusão de um conjunto de dados
- Exportação de um conjunto de dados
- Usando integrações do Exchange
- Treinamento e manutenção do modelo
- Noções Básicas sobre rótulos, campos gerais e metadados
- Hierarquia de rótulos e práticas recomendadas
- Comparação de casos de uso de análise e automação
- Transformando seus objetivos em rótulos
- Visão geral do processo de treinamento do modelo
- Anotação generativa
- Status do conjunto de dados
- Treinamento de modelos e práticas recomendadas de anotação
- Treinamento com análise de sentimento de rótulo habilitada
- Dados de chamadas e chat de treinamento
- Compreensão dos requisitos de dados
- Treinamento
- Introdução ao Refine
- Precisão e recall explicados
- Precisão e recall
- Como a validação funciona
- Compreender e melhorar o desempenho do modelo
- Motivos para baixa precisão média do rótulo
- Treinamento usando Check label e Perda de rótulo
- Treinamento usando Ensinar rótulo (Refinar)
- Treinamento usando a Pesquisa (Refinamento)
- Noções Básicas e Aumentando a Cobertura
- Melhorando o balanceamento e usando o Rebalanceamento
- Quando parar de treinar seu modelo
- Uso dos campos gerais
- Extração generativa
- Uso de análise e monitoramento
- Automations e Communications Mining™
- Desenvolvedor
- Carregamento de dados
- Baixando dados
- Integração do Exchange com usuário do serviço do Azure
- Integração do Exchange com Autenticação de Aplicativo do Azure
- Integração do Exchange com Autenticação de aplicativo e gráfico do Azure
- Como buscar dados para o Tableau com o Python
- Integração do Elasticsearch
- Extração de campo geral
- Integração auto-hospedada do Exchange
- Framework de automação da UiPath®
- Atividades oficiais da UiPath®
- Como as máquinas aprendem a entender as palavras: um guia para incorporações ao NLP
- Aprendizado baseado em solicitação com Transformers
- Efficient Transformers II: extração de conhecimento e ajustes finos
- Transformers eficientes I: mecanismos de atenção
- Modelagem de intenção hierárquica profunda não supervisionada: obtenção de valor sem dados de treinamento
- Corrigindo viés de anotação com o Communications Mining™
- Aprendizado ativo: melhores modelos de ML em menos tempo
- Está tudo nos números - avaliando o desempenho do modelo com métricas
- Por que a validação de modelos é importante
- Comparação do Communications Mining™ e do Google AutoML para inteligência de dados de conversa
- Licenciamento
- Perguntas frequentes e mais

Guia do usuário do Communications Mining
Cobertura é um termo frequentemente usado em machine learning (ML) e está relacionado a quão bem um modelo cobre os dados usados para analisar. No Communications Mining™, isso está relacionado à proporção de mensagens no conjunto de dados que têm previsões de rótulos informativas e é apresentado na página Validação como uma pontuação percentual.
Rótulos informativos são aqueles que a plataforma entende como úteis como rótulos independentes, examinando a frequência com que são atribuídos com outros rótulos. Os rótulos que são sempre atribuídos com outro rótulo têm um peso reduzido quando a pontuação é calculada. Por exemplo, rótulos pai que nunca são atribuídos por conta própria ou Urgente, se for sempre atribuído com outro rótulo.
O visual a seguir mostra como seria a cobertura baixa versus alta em todo um conjunto de dados. Imagine que os círculos sombreados são mensagens que possuem previsões de rótulos informativos:
Como uma métrica, a cobertura é uma maneira muito útil de entender se você capturou todos os diferentes conceitos potenciais em seu conjunto de dados e se você forneceu exemplos de treinamento variados o suficiente para eles para que a plataforma possa previ-los com eficiência.
Em quase todos os casos, quanto maior a cobertura de um modelo, melhor ele funciona, mas você não deve considerá-la isoladamente ao verificar o desempenho do modelo.
Também é muito importante que os rótulos na taxonomia estejam íntegros, o que significa que tenham alta precisão média, e nenhum outro aviso de desempenho, e que os dados de treinamento sejam uma representação equilibrada do conjunto de dados como um todo.
Se seus rótulos não estiverem íntegros ou os dados de treinamento não forem representativos do conjunto de dados, a cobertura do seu modelo que a plataforma calcula não será confiável.
Seu modelo com alta cobertura é particularmente importante se você o estiver usando para orientar processos automatizados.
Para obter mais detalhes sobre a cobertura do modelo e como verificar a cobertura do seu modelo, consulte Compreensão e melhoria do desempenho do modelo.