- Einleitung
- Einrichten Ihres Kontos
- Ausgewogenheit
- Cluster
- Konzeptabweichung
- Abdeckung
- Datasets
- Allgemeine Felder
- Beschriftungen (Vorhersagen, Konfidenzniveaus, Beschriftungshierarchie und Beschriftungsstimmung)
- Modelle
- Streams
- Modellbewertung
- Projekte
- Präzision
- Rückruf
- Nachrichten mit und ohne Anmerkungen
- Extraktionsfelder
- Quellen
- Taxonomien
- Training
- „True“ und „false“ positive und negative Vorhersagen
- Validierung
- Messages
- Zugriffskontrolle und Verwaltung
- Verwalten Sie Quellen und Datasets
- Verstehen der Datenstruktur und -berechtigungen
- Erstellen oder Löschen einer Datenquelle in der GUI
- Hochladen einer CSV-Datei in eine Quelle
- Vorbereiten von Daten für den CSV-Upload
- Ein Dataset wird erstellt
- Mehrsprachige Quellen und Datasets
- Aktivieren der Stimmung für ein Dataset
- Ändern der Dataset-Einstellungen
- Löschen einer Nachricht
- Löschen eines Datasets
- Exportieren eines Datasets
- Verwenden von Exchange-Integrationen
- Modelltraining und -wartung
- Grundlegendes zu Beschriftungen, allgemeinen Feldern und Metadaten
- Beschriftungshierarchie und Best Practices
- Vergleichen von Anwendungsfällen für Analyse und Automatisierung
- Konvertieren Ihrer Ziele in Bezeichnungen
- Übersicht über den Modelltrainingsprozess
- Generative Anmerkung
- Der Status des Datasets
- Best Practice für Modelltraining und Anmerkungen
- Training mit aktivierter Beschriftungs-Stimmungsanalyse
- Training von Chat- und Anrufdaten
- Grundlegendes zu Datenanforderungen
- Trainieren
- Einführung in Verfeinerung
- Erläuterungen zu Präzision und Rückruf
- Präzision und Rückruf
- So funktioniert die Validierung
- Verstehen und Verbessern der Modellleistung
- Gründe für die geringe durchschnittliche Beschriftungsgenauigkeit
- Training mit Beschriftung „Überprüfen“ und Beschriftung „Verpasst“.
- Training mit der Bezeichnung „Teach“ (Verfeinern)
- Training mit der Suche (verfeinern)
- Verstehen und Erhöhen der Abdeckung
- Verbesserung des Abgleichs und Verwendung des Abgleichs
- Wann das Training Ihres Modells beendet werden soll
- Verwenden von allgemeinen Feldern
- Generative Extraktion
- Verwenden von Analyse und Überwachung
- Automations and Communications Mining™
- Entwickler (Developer)
- Einleitung
- Verwenden der API
- API-Tutorial
- Zusammenfassung
- Quellen
- Datasets
- Anmerkungen
- Anhänge (Attachments)
- Vorhersagen
- Erstellen Sie einen Stream
- Aktualisieren Sie einen Stream
- Rufen Sie einen Stream nach Namen ab
- Rufen Sie alle Streams ab
- Löschen Sie einen Stream
- Ergebnisse aus Stream abrufen
- Kommentare aus einem Stream abrufen (Legacy)
- Bringen Sie einen Stream vor
- Einen Stream zurücksetzen
- Kennzeichnen Sie eine Ausnahme
- Entfernen Sie das Tag einer Ausnahme
- Prüfungsereignisse
- Alle Benutzer abrufen
- Exchange Integration mit einem Azure-Dienstbenutzer
- Exchange-Integration mit der Azure-Anwendungsauthentifizierung
- Exchange-Integration mit Azure Application Authentication und Graph
- Abrufen von Daten für Tableau mit Python
- Elasticsearch-Integration
- Selbst gehostete Exchange-Integration
- UiPath® Automatisierungs-Framework
- UiPath® Marketplace-Aktivitäten
- Offizielle UiPath®-Aktivitäten
- Wie Maschinen lernen, Wörter zu verstehen: eine Anleitung zu Einbettungen in NLP
- Eingabeaufforderungsbasiertes Lernen mit Transformers
- Ef Robots II: Wissensdegesterration und Feinabstimmung
- Effiziente Transformer I: Warnmechanismen
- Tief hierarchische, nicht überwachte Absichtsmodellierung: Nutzen ohne Trainingsdaten
- Beheben von Anmerkungsverzerrungen mit Communications Mining™
- Aktives Lernen: Bessere ML-Modelle in weniger Zeit
- Auf Zahlen kommt es an – Bewertung der Modellleistung mit Metriken
- Darum ist Modellvalidierung wichtig
- Vergleich von Communications Mining™ und Google AutoML für Conversation Data Intelligence
- Lizenzierung
- Häufige Fragen und mehr

Communications Mining-Benutzerhandbuch
Die Genauigkeit misst den Anteil der Vorhersagen, die das Modell macht und die tatsächlich richtig waren. Das bedeutet, dass der Anteil der echten positiven Vorhersagen an allen positiven Vorhersagen, die das Modell gemacht hat, ermittelt wird.
Genauigkeit = true positives Ergebnis / (true positive Ergebnisse + false positive)
Beispielsweise ist für alle 100 Nachrichten in einem Dataset, für die die Beschriftung „Information anfordern“ vorhergesagt wurde, die Genauigkeit der Prozentsatz der Male, die die „Anforderung von Informationen“ korrekt vorhergesagt wurde, von der Gesamtzahl der Vorhersagen.
Eine Genauigkeit von 95 % würde bedeuten, dass von 100 Nachrichten, die mit einer bestimmten Beschriftung vorhergesagt werden, 95 korrekt mit Anmerkungen versehen und 5 falsch mit Anmerkungen versehen würden, was bedeutet, dass sie nicht mit dieser Beschriftung hätten mit Anmerkungen versehen werden dürfen.
Eine ausführlichere Erklärung zur Funktionsweise von Präzision finden Sie unter Erklärung von Genauigkeit und Rückruf.
Der AP- Score für eine einzelne Beschriftung wird als Durchschnitt aller Genauigkeitspunktzahlen bei jedem Erinnerungswert zwischen 0 und 100 % für diese Beschriftung berechnet.
Im Wesentlichen misst die durchschnittliche Genauigkeit, wie gut das Modell über alle Konfidenzschwellenwerte für diese Bezeichnung hinweg funktioniert.
Der MAP ist eines der nützlichsten Maßeinheiten für die Gesamtleistung des Modells und stellt eine einfache Möglichkeit dar, verschiedene Modellversionen miteinander zu vergleichen.
Die MAP- Punktzahl ist der Mittelwert der durchschnittlichen Genauigkeitspunktzahl für jede Beschriftung in Ihrer Taxonomie, die mindestens 20 Beispiele im Trainingssatz für die Validierung enthält.
In der Regel ist die Gesamtleistung des Modells umso besser, je höher die MAP-Punktzahl ist. Dies ist jedoch nicht der einzige Faktor, der berücksichtigt werden sollte, wenn ein Modell in Ordnung ist. Es ist auch wichtig zu wissen, dass Ihr Modell unverzerrt ist und eine hohe Abdeckung hat .