- Einleitung
- Einrichten Ihres Kontos
- Ausgewogenheit
- Cluster
- Konzeptabweichung
- Abdeckung
- Datasets
- Allgemeine Felder
- Beschriftungen (Vorhersagen, Konfidenzniveaus, Beschriftungshierarchie und Beschriftungsstimmung)
- Modelle
- Streams
- Modellbewertung
- Projekte
- Präzision
- Rückruf
- Nachrichten mit und ohne Anmerkungen
- Extraktionsfelder
- Quellen
- Taxonomien
- Training
- „True“ und „false“ positive und negative Vorhersagen
- Validierung
- Messages
- Zugriffssteuerung und Administration
- Verwalten Sie Quellen und Datasets
- Verstehen der Datenstruktur und -berechtigungen
- Erstellen oder Löschen einer Datenquelle in der GUI
- Vorbereiten von Daten für den CSV-Upload
- Hochladen einer CSV-Datei in eine Quelle
- Ein Dataset wird erstellt
- Mehrsprachige Quellen und Datasets
- Aktivieren der Stimmung für ein Dataset
- Ändern der Dataset-Einstellungen
- Löschen einer Nachricht
- Löschen eines Datasets
- Exportieren eines Datasets
- Verwenden von Exchange-Integrationen
- Modelltraining und -wartung
- Grundlegendes zu Beschriftungen, allgemeinen Feldern und Metadaten
- Beschriftungshierarchie und Best Practices
- Vergleichen von Anwendungsfällen für Analyse und Automatisierung
- Konvertieren Ihrer Ziele in Bezeichnungen
- Übersicht über den Modelltrainingsprozess
- Generative Anmerkung
- Der Status des Datasets
- Best Practice für Modelltraining und Anmerkungen
- Training mit aktivierter Beschriftungs-Stimmungsanalyse
- Grundlegendes zu Datenanforderungen
- Trainieren
- Einführung in Verfeinerung
- Erläuterungen zu Präzision und Rückruf
- Präzision und Rückruf
- So funktioniert die Validierung
- Verstehen und Verbessern der Modellleistung
- Gründe für die geringe durchschnittliche Beschriftungsgenauigkeit
- Training mit Beschriftung „Überprüfen“ und Beschriftung „Verpasst“.
- Training mit der Bezeichnung „Teach“ (Verfeinern)
- Training mit der Suche (verfeinern)
- Verstehen und Erhöhen der Abdeckung
- Verbesserung des Abgleichs und Verwendung des Abgleichs
- Wann das Training Ihres Modells beendet werden soll
- Verwenden von allgemeinen Feldern
- Generative Extraktion
- Verwenden von Analyse und Überwachung
- Automations and Communications Mining™
- Entwickler (Developer)
- Verwenden der API
- API-Tutorial
- Quellen
- Datasets
- Anmerkungen
- Anhänge (Attachments)
- Vorhersagen
- Erstellen Sie einen Stream
- Aktualisieren Sie einen Stream
- Rufen Sie einen Stream nach Namen ab
- Rufen Sie alle Streams ab
- Löschen Sie einen Stream
- Ergebnisse aus Stream abrufen
- Kommentare aus einem Stream abrufen (Legacy)
- Bringen Sie einen Stream vor
- Einen Stream zurücksetzen
- Kennzeichnen Sie eine Ausnahme
- Entfernen Sie das Tag einer Ausnahme
- Prüfungsereignisse
- Alle Benutzer abrufen
- Hochladen von Daten
- Herunterladen von Daten
- Exchange Integration mit einem Azure-Dienstbenutzer
- Exchange-Integration mit der Azure-Anwendungsauthentifizierung
- Exchange-Integration mit Azure Application Authentication und Graph
- Abrufen von Daten für Tableau mit Python
- Elasticsearch-Integration
- Allgemeine Feldextraktion
- Selbst gehostete Exchange-Integration
- UiPath® Automatisierungs-Framework
- Offizielle UiPath®-Aktivitäten
- Wie Maschinen lernen, Wörter zu verstehen: eine Anleitung zu Einbettungen in NLP
- Eingabeaufforderungsbasiertes Lernen mit Transformers
- Ef Robots II: Wissensdegesterration und Feinabstimmung
- Effiziente Transformer I: Warnmechanismen
- Tief hierarchische, nicht überwachte Absichtsmodellierung: Nutzen ohne Trainingsdaten
- Beheben von Anmerkungsverzerrungen mit Communications Mining™
- Aktives Lernen: Bessere ML-Modelle in weniger Zeit
- Auf Zahlen kommt es an – Bewertung der Modellleistung mit Metriken
- Darum ist Modellvalidierung wichtig
- Vergleich von Communications Mining™ und Google AutoML für Conversation Data Intelligence
- Lizenzierung
- Häufige Fragen und mehr

Communications Mining-Benutzerhandbuch
Nach der Erkennungsphase beginnt das Modell, Vorhersagen für viele der Beschriftungen in Ihrer Taxonomie zu machen.
Der Zweck der Erkundungsphase besteht darin, Vorhersagen für jede Beschriftung zu überprüfen, zu bestätigen, ob sie korrekt sind, und sie zu korrigieren, wenn sie nicht korrekt sind. Infolgedessen bietet sie viel mehr Trainingsbeispiele für das Modell.
Stellen Sie sicher, dass Sie bei der Überprüfung von Beschriftungsvorhersagen die folgenden wichtigen Aktionen berücksichtigen:
- Wenn die Vorhersagen korrekt sind, sollten Sie sie bestätigen oder akzeptieren, indem Sie sie auswählen.
- Wenn sie falsch sind, sollten Sie sie entweder verwerfen oder ignorieren oder alternativ die richtigen Beschriftungen hinzufügen, die zutreffen. Um eine andere Beschriftung hinzuzufügen, wählen Sie die Plus-Schaltfläche
+aus und geben Sie den Namen der Beschriftung ein. Auf diese Weise können falsche Vorhersagen korrigiert werden, indem die richtige hinzugefügt und nicht für falsch vorhergesagte Beschriftungen ausgewählt wird.
Die folgenden Bilder zeigen, wie Vorhersagen in Communications Mining™ für Daten mit und ohne Stimmung angezeigt werden. Wenn Sie mit der Maus auf die Beschriftung zeigen, wird auch die Konfidenz des Modells angezeigt, dass die spezifische Beschriftung zutrifft.
Die Transparenz der vorhergesagten Beschriftung bietet einen visuellen Indikator für die Konfidenz des Modells. Je dunkler die Farbe, desto höher die Konfidenz und umgekehrt:
Um eine Beschriftung zu löschen, die Sie versehentlich angewendet haben, können Sie mit dem Mauszeiger darauf zeigen, und ein X erscheint. Wählen Sie die Schaltfläche X aus, um die Beschriftung zu entfernen: