ixp
latest
false
- Einleitung
- Einrichten Ihres Kontos
- Ausgewogenheit
- Cluster
- Konzeptabweichung
- Abdeckung
- Datasets
- Allgemeine Felder
- Beschriftungen (Vorhersagen, Konfidenzniveaus, Beschriftungshierarchie und Beschriftungsstimmung)
- Modelle
- Streams
- Modellbewertung
- Projekte
- Präzision
- Rückruf
- Nachrichten mit und ohne Anmerkungen
- Extraktionsfelder
- Quellen
- Taxonomien
- Training
- „True“ und „false“ positive und negative Vorhersagen
- Validierung
- Messages
- Zugriffskontrolle und Verwaltung
- Verwalten Sie Quellen und Datasets
- Verstehen der Datenstruktur und -berechtigungen
- Erstellen oder Löschen einer Datenquelle in der GUI
- Hochladen einer CSV-Datei in eine Quelle
- Vorbereiten von Daten für den CSV-Upload
- Ein Dataset wird erstellt
- Mehrsprachige Quellen und Datasets
- Aktivieren der Stimmung für ein Dataset
- Ändern der Dataset-Einstellungen
- Löschen einer Nachricht
- Löschen eines Datasets
- Exportieren eines Datasets
- Verwenden von Exchange-Integrationen
- Modelltraining und -wartung
- Grundlegendes zu Beschriftungen, allgemeinen Feldern und Metadaten
- Beschriftungshierarchie und Best Practices
- Vergleichen von Anwendungsfällen für Analyse und Automatisierung
- Konvertieren Ihrer Ziele in Bezeichnungen
- Übersicht über den Modelltrainingsprozess
- Generative Anmerkung
- Der Status des Datasets
- Best Practice für Modelltraining und Anmerkungen
- Training mit aktivierter Beschriftungs-Stimmungsanalyse
- Training von Chat- und Anrufdaten
- Grundlegendes zu Datenanforderungen
- Trainieren
- Einführung in Verfeinerung
- Erläuterungen zu Präzision und Rückruf
- Präzision und Rückruf
- So funktioniert die Validierung
- Verstehen und Verbessern der Modellleistung
- Gründe für die geringe durchschnittliche Beschriftungsgenauigkeit
- Training mit Beschriftung „Überprüfen“ und Beschriftung „Verpasst“.
- Training mit der Bezeichnung „Teach“ (Verfeinern)
- Training mit der Suche (verfeinern)
- Verstehen und Erhöhen der Abdeckung
- Verbesserung des Abgleichs und Verwendung des Abgleichs
- Wann das Training Ihres Modells beendet werden soll
- Verwenden von allgemeinen Feldern
- Anwenden von Beschriftungen
- Überprüfen von Nachrichten
- Nachrichten werden gesucht
- Bearbeitung der Beschriftung
- Generative Extraktion
- Verwenden von Analyse und Überwachung
- Automations and Communications Mining™
- Entwickler (Developer)
- Einleitung
- Verwenden der API
- API-Tutorial
- Zusammenfassung
- Quellen
- Datasets
- Anmerkungen
- Anhänge (Attachments)
- Vorhersagen
- Erstellen Sie einen Stream
- Aktualisieren Sie einen Stream
- Rufen Sie einen Stream nach Namen ab
- Rufen Sie alle Streams ab
- Löschen Sie einen Stream
- Ergebnisse aus Stream abrufen
- Kommentare aus einem Stream abrufen (Legacy)
- Bringen Sie einen Stream vor
- Einen Stream zurücksetzen
- Kennzeichnen Sie eine Ausnahme
- Entfernen Sie das Tag einer Ausnahme
- Prüfungsereignisse
- Alle Benutzer abrufen
- Exchange Integration mit einem Azure-Dienstbenutzer
- Exchange-Integration mit der Azure-Anwendungsauthentifizierung
- Exchange-Integration mit Azure Application Authentication und Graph
- Abrufen von Daten für Tableau mit Python
- Elasticsearch-Integration
- Selbst gehostete Exchange-Integration
- UiPath® Automatisierungs-Framework
- UiPath® Marketplace-Aktivitäten
- Offizielle UiPath®-Aktivitäten
- Wie Maschinen lernen, Wörter zu verstehen: eine Anleitung zu Einbettungen in NLP
- Eingabeaufforderungsbasiertes Lernen mit Transformers
- Ef Robots II: Wissensdegesterration und Feinabstimmung
- Effiziente Transformer I: Warnmechanismen
- Tief hierarchische, nicht überwachte Absichtsmodellierung: Nutzen ohne Trainingsdaten
- Beheben von Anmerkungsverzerrungen mit Communications Mining™
- Aktives Lernen: Bessere ML-Modelle in weniger Zeit
- Auf Zahlen kommt es an – Bewertung der Modellleistung mit Metriken
- Darum ist Modellvalidierung wichtig
- Vergleich von Communications Mining™ und Google AutoML für Conversation Data Intelligence
- Lizenzierung
- Häufige Fragen und mehr

Communications Mining-Benutzerhandbuch
Letzte Aktualisierung 11. Aug. 2025
Hinweis: Sie müssen die Berechtigungen Quelle – Lesen und Dataset – Lesen als Automation Cloud-Benutzer oder die Berechtigungen Quellen anzeigen und Beschriftungen anzeigen als Legacy-Benutzer zugewiesen haben.
Sie können die Suche entweder auf den Seiten Explore oder Discover verwenden und dabei vom Clustermodus über das Dropdownmenü wechseln, um nach Nachrichten zu suchen, die bestimmte Begriffe oder Ausdrücke enthalten. Die Plattform hebt das Vorkommen Ihrer Suchbegriffe in den Nachrichten hervor, wie im folgenden Abschnitt gezeigt.
Sie können dann vorhergesagte Beschriftungen überprüfen oder Ihre eigenen Beschriftungen auf die Nachrichten anwenden .
Die Hauptunterschiede zwischen der Suche auf den Seiten Discover und Explore sind:
- In Discover können Sie Suchergebnisse in großen Mengen mit Anmerkungen versehen, ähnlich wie das Kommentieren von Clustern, während Sie sie in Explore einzeln mit Anmerkungen versehen.
- Im Gegensatz zu Discover gibt Explore eine geschätzte Gesamtanzahl an Nachrichten zurück, die mit Ihrem Suchbegriff übereinstimmen, wie in den folgenden Bildern gezeigt. Dies kann sehr nützlich sein, wenn Sie versuchen, vor dem Erstellen einer Beschriftung abzuschätzen, wie viele Beispiele in Ihrem Dataset vorhanden sein können, wenn Begriffe vorhanden sind, die sehr eng mit dem Beschriftungskonzept verknüpft sind.