ixp
latest
false
- Einleitung
- Einrichten Ihres Kontos
- Ausgewogenheit
- Cluster
- Konzeptabweichung
- Abdeckung
- Datasets
- Allgemeine Felder
- Beschriftungen (Vorhersagen, Konfidenzniveaus, Beschriftungshierarchie und Beschriftungsstimmung)
- Modelle
- Streams
- Modellbewertung
- Projekte
- Präzision
- Rückruf
- Nachrichten mit und ohne Anmerkungen
- Extraktionsfelder
- Quellen
- Taxonomien
- Training
- „True“ und „false“ positive und negative Vorhersagen
- Validierung
- Messages
- Zugriffssteuerung und Administration
- Verwalten Sie Quellen und Datasets
- Verstehen der Datenstruktur und -berechtigungen
- Erstellen oder Löschen einer Datenquelle in der GUI
- Hochladen einer CSV-Datei in eine Quelle
- Vorbereiten von Daten für den CSV-Upload
- Ein Dataset wird erstellt
- Mehrsprachige Quellen und Datasets
- Aktivieren der Stimmung für ein Dataset
- Ändern der Dataset-Einstellungen
- Löschen einer Nachricht
- Löschen eines Datasets
- Exportieren eines Datasets
- Verwenden von Exchange-Integrationen
- Modelltraining und -wartung
- Grundlegendes zu Beschriftungen, allgemeinen Feldern und Metadaten
- Beschriftungshierarchie und Best Practices
- Best Practices für den Taxonomieentwurf
- Definieren von Taxonomiezielen
- Erstellen der Taxonomiestruktur
- Importieren der Taxonomie
- Vergleichen von Anwendungsfällen für Analyse und Automatisierung
- Konvertieren Ihrer Ziele in Bezeichnungen
- Übersicht über den Modelltrainingsprozess
- Generative Anmerkung
- Der Status des Datasets
- Best Practice für Modelltraining und Anmerkungen
- Training mit aktivierter Beschriftungs-Stimmungsanalyse
- Training von Chat- und Anrufdaten
- Grundlegendes zu Datenanforderungen
- Trainieren
- Einführung in Verfeinerung
- Erläuterungen zu Präzision und Rückruf
- Präzision und Rückruf
- So funktioniert die Validierung
- Verstehen und Verbessern der Modellleistung
- Gründe für die geringe durchschnittliche Beschriftungsgenauigkeit
- Training mit Beschriftung „Überprüfen“ und Beschriftung „Verpasst“.
- Training mit der Bezeichnung „Teach“ (Verfeinern)
- Training mit der Suche (verfeinern)
- Verstehen und Erhöhen der Abdeckung
- Verbesserung des Abgleichs und Verwendung des Abgleichs
- Wann das Training Ihres Modells beendet werden soll
- Verwenden von allgemeinen Feldern
- Generative Extraktion
- Verwenden von Analyse und Überwachung
- Automations and Communications Mining™
- Entwickler (Developer)
- Verwenden der API
- API-Tutorial
- Quellen
- Datasets
- Anmerkungen
- Anhänge (Attachments)
- Vorhersagen
- Erstellen Sie einen Stream
- Aktualisieren Sie einen Stream
- Rufen Sie einen Stream nach Namen ab
- Rufen Sie alle Streams ab
- Löschen Sie einen Stream
- Ergebnisse aus Stream abrufen
- Kommentare aus einem Stream abrufen (Legacy)
- Bringen Sie einen Stream vor
- Einen Stream zurücksetzen
- Kennzeichnen Sie eine Ausnahme
- Entfernen Sie das Tag einer Ausnahme
- Prüfungsereignisse
- Alle Benutzer abrufen
- Hochladen von Daten
- Herunterladen von Daten
- Exchange Integration mit einem Azure-Dienstbenutzer
- Exchange-Integration mit der Azure-Anwendungsauthentifizierung
- Exchange-Integration mit Azure Application Authentication und Graph
- Abrufen von Daten für Tableau mit Python
- Elasticsearch-Integration
- Allgemeine Feldextraktion
- Selbst gehostete Exchange-Integration
- UiPath® Automatisierungs-Framework
- Offizielle UiPath®-Aktivitäten
- Wie Maschinen lernen, Wörter zu verstehen: eine Anleitung zu Einbettungen in NLP
- Eingabeaufforderungsbasiertes Lernen mit Transformers
- Ef Robots II: Wissensdegesterration und Feinabstimmung
- Effiziente Transformer I: Warnmechanismen
- Tief hierarchische, nicht überwachte Absichtsmodellierung: Nutzen ohne Trainingsdaten
- Beheben von Anmerkungsverzerrungen mit Communications Mining™
- Aktives Lernen: Bessere ML-Modelle in weniger Zeit
- Auf Zahlen kommt es an – Bewertung der Modellleistung mit Metriken
- Darum ist Modellvalidierung wichtig
- Vergleich von Communications Mining™ und Google AutoML für Conversation Data Intelligence
- Lizenzierung
- Häufige Fragen und mehr

Communications Mining-Benutzerhandbuch
Letzte Aktualisierung 7. Okt. 2025
Sie können Ihre Taxonomie der Beschriftungen aus einer Kalkulationstabelle auf die Communications Mining™-Plattform hochladen. Beim Hochladen Ihrer Taxonomie aus einer Kalkulationstabelle werden automatisch alle Beschriftungen importiert, ohne dass sie während des Modelltrainings manuell hinzugefügt werden müssen.
Führen Sie die folgenden Schritte aus, um Ihre Taxonomie aus einer Kalkulationstabelle zu importieren:
- Wählen Sie in der Navigationsleiste Einstellungen aus, dann Taxonomie und Beschriftungen und Extraktionsfelder.
- Wählen Sie den Dropdown-Pfeil neben der Schaltfläche Neue Beschriftung aus.
- Wählen Sie Aus Kalkulationstabelle importieren aus der Dropdownliste aus.
- Kopieren Sie Ihre Beschriftungen (Format „Übergeordnete Beschriftung“ > „Untergeordnete Beschriftung“) und deren Beschreibungen (falls verfügbar) aus Ihrer Kalkulationstabelle.
- Wählen Sie Importieren aus.
Hinweis: Es wird dringend empfohlen, Ihren Beschriftungen Beschriftungsbeschreibungen hinzuzufügen, um die Konsistenz der Anmerkungen sicherzustellen. Das Hinzufügen von Beschriftungsbeschreibungen ist besonders hilfreich, wenn mehrere Personen das Modell trainieren.
Führen Sie die folgenden Schritte aus, um Ihre Taxonomie aus einem anderen Dataset zu importieren:
- Wählen Sie den Dropdown-Pfeil neben der Schaltfläche Neue Beschriftung aus.
- Wählen Sie Aus Dataset importieren aus der Dropdownliste aus.
- Wählen Sie einen Dataset-Namen aus der Dropdownliste aus.
- Wählen Sie Importieren aus.
Hinweis: Dadurch werden nur Beschriftungen und Beschreibungen aus einem vorhandenen Dataset kopiert. Um ein gesamtes Dataset einschließlich Anmerkungen und Quellen zu kopieren, wählen Sie Duplizieren aus den Dataset-Optionen auf der Seite Datasets aus.
Manuell importierte oder erstellte Beschriftungen in der Taxonomieansicht