ixp
latest
false
- Einleitung
- Einrichten Ihres Kontos
- Ausgewogenheit
- Cluster
- Konzeptabweichung
- Abdeckung
- Datasets
- Allgemeine Felder
- Beschriftungen (Vorhersagen, Konfidenzniveaus, Beschriftungshierarchie und Beschriftungsstimmung)
- Modelle
- Streams
- Modellbewertung
- Projekte
- Präzision
- Rückruf
- Nachrichten mit und ohne Anmerkungen
- Extraktionsfelder
- Quellen
- Taxonomien
- Training
- „True“ und „false“ positive und negative Vorhersagen
- Validierung
- Messages
- Zugriffssteuerung und Administration
- Verwalten Sie Quellen und Datasets
- Verstehen der Datenstruktur und -berechtigungen
- Erstellen oder Löschen einer Datenquelle in der GUI
- Hochladen einer CSV-Datei in eine Quelle
- Vorbereiten von Daten für den CSV-Upload
- Ein Dataset wird erstellt
- Mehrsprachige Quellen und Datasets
- Aktivieren der Stimmung für ein Dataset
- Ändern der Dataset-Einstellungen
- Löschen einer Nachricht
- Löschen eines Datasets
- Exportieren eines Datasets
- Verwenden von Exchange-Integrationen
- Modelltraining und -wartung
- Grundlegendes zu Beschriftungen, allgemeinen Feldern und Metadaten
- Beschriftungshierarchie und Best Practices
- Vergleichen von Anwendungsfällen für Analyse und Automatisierung
- Konvertieren Ihrer Ziele in Bezeichnungen
- Übersicht über den Modelltrainingsprozess
- Generative Anmerkung
- Der Status des Datasets
- Best Practice für Modelltraining und Anmerkungen
- Training mit aktivierter Beschriftungs-Stimmungsanalyse
- Grundlegendes zu Datenanforderungen
- Trainieren
- Einführung in Verfeinerung
- Erläuterungen zu Präzision und Rückruf
- Präzision und Rückruf
- So funktioniert die Validierung
- Verstehen und Verbessern der Modellleistung
- Gründe für die geringe durchschnittliche Beschriftungsgenauigkeit
- Training mit Beschriftung „Überprüfen“ und Beschriftung „Verpasst“.
- Training mit der Bezeichnung „Teach“ (Verfeinern)
- Training mit der Suche (verfeinern)
- Verstehen und Erhöhen der Abdeckung
- Verbesserung des Abgleichs und Verwendung des Abgleichs
- Wann das Training Ihres Modells beendet werden soll
- Verwenden von allgemeinen Feldern
- Generative Extraktion
- Verwenden von Analyse und Überwachung
- Automations and Communications Mining™
- Entwickler (Developer)
- Verwenden der API
- API-Tutorial
- Quellen
- Datasets
- Anmerkungen
- Anhänge (Attachments)
- Vorhersagen
- Erstellen Sie einen Stream
- Aktualisieren Sie einen Stream
- Rufen Sie einen Stream nach Namen ab
- Rufen Sie alle Streams ab
- Löschen Sie einen Stream
- Ergebnisse aus Stream abrufen
- Kommentare aus einem Stream abrufen (Legacy)
- Bringen Sie einen Stream vor
- Einen Stream zurücksetzen
- Kennzeichnen Sie eine Ausnahme
- Entfernen Sie das Tag einer Ausnahme
- Prüfungsereignisse
- Alle Benutzer abrufen
- Hochladen von Daten
- Herunterladen von Daten
- Exchange Integration mit einem Azure-Dienstbenutzer
- Exchange-Integration mit der Azure-Anwendungsauthentifizierung
- Exchange-Integration mit Azure Application Authentication und Graph
- Abrufen von Daten für Tableau mit Python
- Elasticsearch-Integration
- Allgemeine Feldextraktion
- Selbst gehostete Exchange-Integration
- UiPath® Automatisierungs-Framework
- Offizielle UiPath®-Aktivitäten
- Wie Maschinen lernen, Wörter zu verstehen: eine Anleitung zu Einbettungen in NLP
- Eingabeaufforderungsbasiertes Lernen mit Transformers
- Ef Robots II: Wissensdegesterration und Feinabstimmung
- Effiziente Transformer I: Warnmechanismen
- Tief hierarchische, nicht überwachte Absichtsmodellierung: Nutzen ohne Trainingsdaten
- Beheben von Anmerkungsverzerrungen mit Communications Mining™
- Aktives Lernen: Bessere ML-Modelle in weniger Zeit
- Auf Zahlen kommt es an – Bewertung der Modellleistung mit Metriken
- Darum ist Modellvalidierung wichtig
- Vergleich von Communications Mining™ und Google AutoML für Conversation Data Intelligence
- Lizenzierung
- Häufige Fragen und mehr

Communications Mining-Benutzerhandbuch
Letzte Aktualisierung 20. Okt. 2025
/api/v1/datasets/<project>/<dataset_name>/streams
/api/v1/datasets/<project>/<dataset_name>/streamsErforderliche Berechtigungen: Streams-Administrator, Bezeichnungen anzeigen
- Bash
curl -X PUT 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "stream": { "comment_filter": { "user_properties": { "number:Spend": { "maximum": 100000, "minimum": 100 }, "number:Transactions": { "one_of": [ 1 ] }, "string:Country": { "one_of": [ "uk", "de" ] } } }, "description": "Used by ACME RPA to create tickets for disputes.", "model": { "label_thresholds": [ { "name": [ "Some Label" ], "threshold": 0.37 }, { "name": [ "Another Label" ], "threshold": 0.46 }, { "name": [ "Parent Label", "Child Label" ], "threshold": 0.41 } ], "version": 8 }, "name": "dispute", "title": "Collateral Disputes" } }'curl -X PUT 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "stream": { "comment_filter": { "user_properties": { "number:Spend": { "maximum": 100000, "minimum": 100 }, "number:Transactions": { "one_of": [ 1 ] }, "string:Country": { "one_of": [ "uk", "de" ] } } }, "description": "Used by ACME RPA to create tickets for disputes.", "model": { "label_thresholds": [ { "name": [ "Some Label" ], "threshold": 0.37 }, { "name": [ "Another Label" ], "threshold": 0.46 }, { "name": [ "Parent Label", "Child Label" ], "threshold": 0.41 } ], "version": 8 }, "name": "dispute", "title": "Collateral Disputes" } }' - Knoten
const request = require("request"); request.put( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { stream: { comment_filter: { user_properties: { "number:Spend": { maximum: 100000, minimum: 100 }, "number:Transactions": { one_of: [1] }, "string:Country": { one_of: ["uk", "de"] }, }, }, description: "Used by ACME RPA to create tickets for disputes.", model: { label_thresholds: [ { name: ["Some Label"], threshold: 0.37 }, { name: ["Another Label"], threshold: 0.46 }, { name: ["Parent Label", "Child Label"], threshold: 0.41 }, ], version: 8, }, name: "dispute", title: "Collateral Disputes", }, }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } );const request = require("request"); request.put( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { stream: { comment_filter: { user_properties: { "number:Spend": { maximum: 100000, minimum: 100 }, "number:Transactions": { one_of: [1] }, "string:Country": { one_of: ["uk", "de"] }, }, }, description: "Used by ACME RPA to create tickets for disputes.", model: { label_thresholds: [ { name: ["Some Label"], threshold: 0.37 }, { name: ["Another Label"], threshold: 0.46 }, { name: ["Parent Label", "Child Label"], threshold: 0.41 }, ], version: 8, }, name: "dispute", title: "Collateral Disputes", }, }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } ); - Python
import json import os import requests response = requests.put( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "stream": { "name": "dispute", "title": "Collateral Disputes", "description": "Used by ACME RPA to create tickets for disputes.", "model": { "version": 8, "label_thresholds": [ {"name": ["Some Label"], "threshold": 0.37}, {"name": ["Another Label"], "threshold": 0.46}, { "name": ["Parent Label", "Child Label"], "threshold": 0.41, }, ], }, "comment_filter": { "user_properties": { "string:Country": {"one_of": ["uk", "de"]}, "number:Spend": {"minimum": 100, "maximum": 100000}, "number:Transactions": {"one_of": [1]}, } }, } }, ) print(json.dumps(response.json(), indent=2, sort_keys=True))import json import os import requests response = requests.put( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "stream": { "name": "dispute", "title": "Collateral Disputes", "description": "Used by ACME RPA to create tickets for disputes.", "model": { "version": 8, "label_thresholds": [ {"name": ["Some Label"], "threshold": 0.37}, {"name": ["Another Label"], "threshold": 0.46}, { "name": ["Parent Label", "Child Label"], "threshold": 0.41, }, ], }, "comment_filter": { "user_properties": { "string:Country": {"one_of": ["uk", "de"]}, "number:Spend": {"minimum": 100, "maximum": 100000}, "number:Transactions": {"one_of": [1]}, } }, } }, ) print(json.dumps(response.json(), indent=2, sort_keys=True)) - Antwort
{ "status": "ok", "stream": { "context": "0", "created_at": "2019-08-03T12:30:00.123456Z", "dataset_id": "abcdef0123456789", "description": "Used by ACME RPA to create tickets for disputes.", "id": "0123456789abcdef", "model": { "version": 8 }, "name": "dispute", "title": "Collateral Disputes", "updated_at": "2019-08-03T12:30:00.123456Z" } }{ "status": "ok", "stream": { "context": "0", "created_at": "2019-08-03T12:30:00.123456Z", "dataset_id": "abcdef0123456789", "description": "Used by ACME RPA to create tickets for disputes.", "id": "0123456789abcdef", "model": { "version": 8 }, "name": "dispute", "title": "Collateral Disputes", "updated_at": "2019-08-03T12:30:00.123456Z" } }
Streams ermöglichen eine persistente, zustandsbehaftete Iteration durch Kommentare in einem Dataset, mit vorhergesagten Beschriftungen und allgemeinen Feldern, die mit einem fixierten Modell berechnet werden.
Sobald ein Stream erstellt wurde, können die und-Methoden verwendet werden, um Kommentare zu durchlaufen.
| Name | Typ | Erforderlich | BESCHREIBUNG |
|---|---|---|---|
name | string | ja | API-Name für den Stream, der in URLs verwendet wird. Muss innerhalb eines Datasets eindeutig sein und mit [A-Za-z0-9-_]{1,256} übereinstimmen.
|
title | string | nein | Einzeiliger, visuell lesbarer Titel für den Stream. |
description | string | nein | Eine längere Beschreibung des Streams. |
model | Modell | nein | Wenn angegeben, enthalten aus diesem Stream abgerufene Kommentare Vorhersagen aus einem angehefteten Modell. |
comment_filter | CommentFilter | nein | Wenn angegeben, werden Kommentare, die nicht dem Filter entsprechen, nicht zurückgegeben. Weitere Informationen dazu, wie sich der Kommentarfilter auf die vom Stream zurückgegebenen Ergebnisse auswirkt, finden Sie in |
Dabei hat
Model das folgende Format:
| Name | Typ | Erforderlich | BESCHREIBUNG |
|---|---|---|---|
version | Integer | ja | Eine Modellversion, die über die Seite Modelle angeheftet wurde. |
label_thresholds | array<LabelThreshold> | nein | Wenn diese Option festgelegt ist, werden nur Werte zurückgegeben, die den angegebenen label_thresholds entsprechen. Wenn diese Option nicht festgelegt ist, werden alle Beschriftungen und alle Vorhersagewerte zurückgegeben.
|
Dabei hat
LabelThreshold das folgende Format:
| Name | Typ | Erforderlich | BESCHREIBUNG |
|---|---|---|---|
name | array<string> | ja | Der Name der zurückzugebenden Bezeichnung, formatiert als Liste hierarchischer Bezeichnungen. Beispielsweise hat die Beschriftung "Some Label" das Format ["Some Label"] und die Beschriftung "Parent Label > Child Label" das Format ["Parent Label", "Child Label"].
|
threshold | Nummer | ja | Der Konfidenz-Schwellenwert, der für die Bezeichnung verwendet werden soll (eine Zahl zwischen 0,0 und 1,0). Die Bezeichnung wird für einen Kommentar nur zurückgegeben, wenn die Vorhersage über diesem Schwellenwert liegt. |
Dabei hat
CommentFilter das folgende Format:
| Name | Typ | Erforderlich | BESCHREIBUNG |
|---|---|---|---|
user_properties | UserPropertyFilter | nein | Ein Filter, der für die Benutzereigenschaften eines Kommentars gilt. Weitere Informationen zu Benutzereigenschaften finden Sie unter Kommentarreferenz. |
UserPropertyFilter ist eine Zuordnung von Benutzereigenschaftsnamen, die gefiltert werden sollen. String-Eigenschaften können nach Werten in einem Satz gefiltert werden ({"one_of": ["val_1", "val_2"]}). Zahleneigenschaften können entweder nach Werten in einem Satz ({"one_of": [123, 456]}) oder nach einem Bereich ({"minimum": 123, "maximum": 456}) gefiltert werden.