- Einleitung
- Einrichten Ihres Kontos
- Ausgewogenheit
- Cluster
- Konzeptabweichung
- Abdeckung
- Datasets
- Allgemeine Felder
- Beschriftungen (Vorhersagen, Konfidenzniveaus, Beschriftungshierarchie und Beschriftungsstimmung)
- Modelle
- Streams
- Modellbewertung
- Projekte
- Präzision
- Rückruf
- Nachrichten mit und ohne Anmerkungen
- Extraktionsfelder
- Quellen
- Taxonomien
- Training
- „True“ und „false“ positive und negative Vorhersagen
- Validierung
- Messages
- Zugriffssteuerung und Administration
- Verwalten Sie Quellen und Datasets
- Verstehen der Datenstruktur und -berechtigungen
- Erstellen oder Löschen einer Datenquelle in der GUI
- Hochladen einer CSV-Datei in eine Quelle
- Vorbereiten von Daten für den CSV-Upload
- Ein Dataset wird erstellt
- Mehrsprachige Quellen und Datasets
- Aktivieren der Stimmung für ein Dataset
- Ändern der Dataset-Einstellungen
- Löschen einer Nachricht
- Löschen eines Datasets
- Exportieren eines Datasets
- Verwenden von Exchange-Integrationen
- Modelltraining und -wartung
- Grundlegendes zu Beschriftungen, allgemeinen Feldern und Metadaten
- Beschriftungshierarchie und Best Practices
- Vergleichen von Anwendungsfällen für Analyse und Automatisierung
- Konvertieren Ihrer Ziele in Bezeichnungen
- Übersicht über den Modelltrainingsprozess
- Generative Anmerkung
- Der Status des Datasets
- Best Practice für Modelltraining und Anmerkungen
- Training mit aktivierter Beschriftungs-Stimmungsanalyse
- Training von Chat- und Anrufdaten
- Grundlegendes zu Datenanforderungen
- Trainieren
- Einführung in Verfeinerung
- Erläuterungen zu Präzision und Rückruf
- Präzision und Rückruf
- So funktioniert die Validierung
- Verstehen und Verbessern der Modellleistung
- Gründe für die geringe durchschnittliche Beschriftungsgenauigkeit
- Training mit Beschriftung „Überprüfen“ und Beschriftung „Verpasst“.
- Training mit der Bezeichnung „Teach“ (Verfeinern)
- Training mit der Suche (verfeinern)
- Verstehen und Erhöhen der Abdeckung
- Verbesserung des Abgleichs und Verwendung des Abgleichs
- Wann das Training Ihres Modells beendet werden soll
- Verwenden von allgemeinen Feldern
- Generative Extraktion
- Verwenden von Analyse und Überwachung
- Automations and Communications Mining™
- Entwickler (Developer)
- Verwenden der API
- API-Tutorial
- Quellen
- Datasets
- Anmerkungen
- Anhänge (Attachments)
- Vorhersagen
- Erstellen Sie einen Stream
- Aktualisieren Sie einen Stream
- Rufen Sie einen Stream nach Namen ab
- Rufen Sie alle Streams ab
- Löschen Sie einen Stream
- Ergebnisse aus Stream abrufen
- Kommentare aus einem Stream abrufen (Legacy)
- Bringen Sie einen Stream vor
- Einen Stream zurücksetzen
- Kennzeichnen Sie eine Ausnahme
- Entfernen Sie das Tag einer Ausnahme
- Prüfungsereignisse
- Alle Benutzer abrufen
- Hochladen von Daten
- Herunterladen von Daten
- Exchange Integration mit einem Azure-Dienstbenutzer
- Exchange-Integration mit der Azure-Anwendungsauthentifizierung
- Exchange-Integration mit Azure Application Authentication und Graph
- Abrufen von Daten für Tableau mit Python
- Elasticsearch-Integration
- Allgemeine Feldextraktion
- Selbst gehostete Exchange-Integration
- UiPath® Automatisierungs-Framework
- Offizielle UiPath®-Aktivitäten
- Wie Maschinen lernen, Wörter zu verstehen: eine Anleitung zu Einbettungen in NLP
- Eingabeaufforderungsbasiertes Lernen mit Transformers
- Ef Robots II: Wissensdegesterration und Feinabstimmung
- Effiziente Transformer I: Warnmechanismen
- Tief hierarchische, nicht überwachte Absichtsmodellierung: Nutzen ohne Trainingsdaten
- Beheben von Anmerkungsverzerrungen mit Communications Mining™
- Aktives Lernen: Bessere ML-Modelle in weniger Zeit
- Auf Zahlen kommt es an – Bewertung der Modellleistung mit Metriken
- Darum ist Modellvalidierung wichtig
- Vergleich von Communications Mining™ und Google AutoML für Conversation Data Intelligence
- Lizenzierung
- Häufige Fragen und mehr

Communications Mining-Benutzerhandbuch
Communications Mining™ bietet eine Vielzahl integrierter Analysetools. Manchmal ist es jedoch erforderlich, die Vorhersagen aus Communications Mining mit Daten zu verbinden, die nicht als Teil von Communications Mining-Kommentaren hochgeladen werden können. In diesen Fällen besteht eine gängige Lösung darin, die Vorhersagen von Communications Mining und alle zusätzlichen Daten in Elasticsearch zu indizieren und ein Tool wie Kibana zu verwenden, um die Analyse zu ermöglichen. In diesem Tutorial wird beschrieben, wie Communications Mining-Daten in Elasticsearch importiert und in Kibana visualisiert werden.
Die Daten, die in den Beispielen in diesem Tutorial verwendet werden, sind generierte Dummy-E-Mails aus der Versicherungsdomäne.
{
"comment": {
"id": "c7a1c529-3f57-4be6-9102-c9f892b81ae51",
"uid": "49ba2c56a945386c.c7a1c529-3f57-4be6-9102-c9f892b81ae51",
"timestamp": "2021-03-29T08:36:25.607Z",
"messages": [
{
"body": {
"text": "The policyholder has changed their address to the new address: 19 Essex Gardens, SW17 2UL"
},
"subject": {
"text": "Change of address - Policy SFG48807871"
},
"from": "CPX8460080@broker.com",
"to": ["underwriter@insurer.com"],
"sent_at": "2021-03-29T08:36:25.607Z"
}
]
// (... more properties ...)
},
"labels": [
{
"name": ["Admin"],
"probability": 0.9995054006576538
},
{
"name": ["Admin", "Change of address"],
"probability": 0.9995054006576538
}
],
"entities": [
{
"name": "address-line-1",
"formatted_value": "19 Essex Gardens",
"span": {
"content_part": "body",
"message_index": 0,
"char_start": 63,
"char_end": 79,
"utf16_byte_start": 126,
"utf16_byte_end": 158
}
},
{
"name": "post-code",
"formatted_value": "SW17 2UL",
"span": {
"content_part": "body",
"message_index": 0,
"char_start": 81,
"char_end": 89,
"utf16_byte_start": 162,
"utf16_byte_end": 178
}
},
{
"name": "policy-number",
"formatted_value": "SFG48807871",
"span": {
"content_part": "subject",
"message_index": 0,
"char_start": 27,
"char_end": 38,
"utf16_byte_start": 54,
"utf16_byte_end": 76
}
}
]
}
{
"comment": {
"id": "c7a1c529-3f57-4be6-9102-c9f892b81ae51",
"uid": "49ba2c56a945386c.c7a1c529-3f57-4be6-9102-c9f892b81ae51",
"timestamp": "2021-03-29T08:36:25.607Z",
"messages": [
{
"body": {
"text": "The policyholder has changed their address to the new address: 19 Essex Gardens, SW17 2UL"
},
"subject": {
"text": "Change of address - Policy SFG48807871"
},
"from": "CPX8460080@broker.com",
"to": ["underwriter@insurer.com"],
"sent_at": "2021-03-29T08:36:25.607Z"
}
]
// (... more properties ...)
},
"labels": [
{
"name": ["Admin"],
"probability": 0.9995054006576538
},
{
"name": ["Admin", "Change of address"],
"probability": 0.9995054006576538
}
],
"entities": [
{
"name": "address-line-1",
"formatted_value": "19 Essex Gardens",
"span": {
"content_part": "body",
"message_index": 0,
"char_start": 63,
"char_end": 79,
"utf16_byte_start": 126,
"utf16_byte_end": 158
}
},
{
"name": "post-code",
"formatted_value": "SW17 2UL",
"span": {
"content_part": "body",
"message_index": 0,
"char_start": 81,
"char_end": 89,
"utf16_byte_start": 162,
"utf16_byte_end": 178
}
},
{
"name": "policy-number",
"formatted_value": "SFG48807871",
"span": {
"content_part": "subject",
"message_index": 0,
"char_start": 27,
"char_end": 38,
"utf16_byte_start": 54,
"utf16_byte_end": 76
}
}
]
}
{
"id": "c7a1c529-3f57-4be6-9102-c9f892b81ae51",
"uid": "49ba2c56a945386c.c7a1c529-3f57-4be6-9102-c9f892b81ae51",
"timestamp": "2021-03-29T08:36:25.607Z",
"subject": "Change of address - Policy SFG48807871",
"body": "The policyholder has changed their address to the new address: 19 Essex Gardens, SW17 2UL",
// (... more fields ...)
"labels": ["Admin", "Admin > Change of address"],
"entities": {
"policy_number": ["SFG48807871"],
"address-line-1": ["19 Essex Gardens"],
"post-code": ["SW17 2UL"]
}
}
{
"id": "c7a1c529-3f57-4be6-9102-c9f892b81ae51",
"uid": "49ba2c56a945386c.c7a1c529-3f57-4be6-9102-c9f892b81ae51",
"timestamp": "2021-03-29T08:36:25.607Z",
"subject": "Change of address - Policy SFG48807871",
"body": "The policyholder has changed their address to the new address: 19 Essex Gardens, SW17 2UL",
// (... more fields ...)
"labels": ["Admin", "Admin > Change of address"],
"entities": {
"policy_number": ["SFG48807871"],
"address-line-1": ["19 Essex Gardens"],
"post-code": ["SW17 2UL"]
}
}
labels
ein Array sein. Wenn ein oder mehrere allgemeine Feldtypen für das Dataset konfiguriert wurden, enthält ein Kommentar außerdem null, ein oder mehrere allgemeine Felder jedes allgemeinen Feldtyps. Die hierarchischen Bezeichnungsnamen in der unformatierten API-Antwort sind selbst Arrays (["Admin", "Change of address"]
) und sollten in Strings konvertiert werden ("Admin > Change of address"
).
In order to fetch the data, we recommend using the . For an overview of all available data download methods, check Downloading data. When creating a Stream, you should set the thresholds for each label so that labels with confidence scores below the threshold are discarded. This is easiest to do from the Communications Mining™ UI by going to the "Streams" page of a dataset. Having used the confidence scores to determine whether a label applies, you can then import just the label names into Elasticsearch. For a discussion on when we recommend dropping or keeping label confidence scores, check Labels for Analytics.
Allgemeine Felder haben keine Konfidenzbewertungen, daher ist keine spezielle Behandlung erforderlich.
Verwalten der Modelländerungen
Beim Erstellen eines Streams geben Sie eine Modellversion an. Diese Modellversion wird verwendet, um Vorhersagen beim Abrufen von Kommentaren aus dem Stream bereitzustellen. Auch wenn Benutzer neue Modellversionen in der Plattform weiter trainieren, verwendet Ihr Stream die von Ihnen angegebene Modellversion, was Ihnen determinierte Ergebnisse liefert.
Um auf eine neue Modellversion zu aktualisieren, müssen Sie einen neuen Stream erstellen, der diese Modellversion verwendet, und dann Ihren Code aktualisieren, um den neuen Stream zu verwenden. (Aus diesem Grund empfehlen wir, dass Sie den Streamnamen in Ihrem Code konfigurierbar machen.) Um sicherzustellen, dass Analysen mit Vorhersagen konsistent bleiben, sollten Sie Vorhersagen für historische Daten mithilfe der aktualisierten Modellversion erneut erfassen. Das ist möglich, indem Sie zum Zeitstempel vor Ihrem ältesten Kommentar streamen und die Daten von Anfang an erneut erfassen.
Sobald Sie die Daten in Elasticsearch indiziert haben, können Sie mit dem Erstellen von Visualisierungen beginnen. Dieser Abschnitt enthält einfache Beispiele für eine Reihe gängiger Visualisierungstools in Kibana.
Timeout
Sie können den folgenden Ausdruck verwenden, um ein Diagramm der fünf gängigsten Beschriftungen im Zeitverlauf zu erstellen. Beachten Sie, dass hier sowohl Kategorie- als auch Unterkategoriebeschriftungen der obersten Ebene angezeigt werden.
.es(index=example-data,split=labels:5,timefield=@timestamp)
.label("$1", "^.* > labels:(.+) > .*")
.es(index=example-data,split=labels:5,timefield=@timestamp)
.label("$1", "^.* > labels:(.+) > .*")
Balkendiagramm
Kreisdiagramm