ixp
latest
false
- Einleitung
- Einrichten Ihres Kontos
- Ausgewogenheit
- Cluster
- Konzeptabweichung
- Abdeckung
- Datasets
- Allgemeine Felder
- Beschriftungen (Vorhersagen, Konfidenzniveaus, Beschriftungshierarchie und Beschriftungsstimmung)
- Modelle
- Streams
- Modellbewertung
- Projekte
- Präzision
- Rückruf
- Nachrichten mit und ohne Anmerkungen
- Extraktionsfelder
- Quellen
- Taxonomien
- Training
- „True“ und „false“ positive und negative Vorhersagen
- Validierung
- Messages
- Zugriffssteuerung und Administration
- Verwalten Sie Quellen und Datasets
- Verstehen der Datenstruktur und -berechtigungen
- Erstellen oder Löschen einer Datenquelle in der GUI
- Hochladen einer CSV-Datei in eine Quelle
- Vorbereiten von Daten für den CSV-Upload
- Ein Dataset wird erstellt
- Mehrsprachige Quellen und Datasets
- Aktivieren der Stimmung für ein Dataset
- Ändern der Dataset-Einstellungen
- Löschen einer Nachricht
- Löschen eines Datasets
- Exportieren eines Datasets
- Verwenden von Exchange-Integrationen
- Modelltraining und -wartung
- Grundlegendes zu Beschriftungen, allgemeinen Feldern und Metadaten
- Beschriftungshierarchie und Best Practices
- Vergleichen von Anwendungsfällen für Analyse und Automatisierung
- Konvertieren Ihrer Ziele in Bezeichnungen
- Übersicht über den Modelltrainingsprozess
- Generative Anmerkung
- Der Status des Datasets
- Best Practice für Modelltraining und Anmerkungen
- Training mit aktivierter Beschriftungs-Stimmungsanalyse
- Training von Chat- und Anrufdaten
- Grundlegendes zu Datenanforderungen
- Trainieren
- Einführung in Verfeinerung
- Erläuterungen zu Präzision und Rückruf
- Präzision und Rückruf
- So funktioniert die Validierung
- Verstehen und Verbessern der Modellleistung
- Gründe für die geringe durchschnittliche Beschriftungsgenauigkeit
- Training mit Beschriftung „Überprüfen“ und Beschriftung „Verpasst“.
- Training mit der Bezeichnung „Teach“ (Verfeinern)
- Training mit der Suche (verfeinern)
- Verstehen und Erhöhen der Abdeckung
- Verbesserung des Abgleichs und Verwendung des Abgleichs
- Wann das Training Ihres Modells beendet werden soll
- Verwenden von allgemeinen Feldern
- Generative Extraktion
- Verwenden von Analyse und Überwachung
- Automations and Communications Mining™
- Entwickler (Developer)
- Verwenden der API
- API-Tutorial
- Quellen
- Datasets
- Anmerkungen
- Anhänge (Attachments)
- Vorhersagen
- Erstellen Sie einen Stream
- Aktualisieren Sie einen Stream
- Rufen Sie einen Stream nach Namen ab
- Rufen Sie alle Streams ab
- Löschen Sie einen Stream
- Ergebnisse aus Stream abrufen
- Kommentare aus einem Stream abrufen (Legacy)
- Bringen Sie einen Stream vor
- Einen Stream zurücksetzen
- Kennzeichnen Sie eine Ausnahme
- Entfernen Sie das Tag einer Ausnahme
- Prüfungsereignisse
- Alle Benutzer abrufen
- Hochladen von Daten
- Herunterladen von Daten
- Exchange Integration mit einem Azure-Dienstbenutzer
- Exchange-Integration mit der Azure-Anwendungsauthentifizierung
- Exchange-Integration mit Azure Application Authentication und Graph
- Abrufen von Daten für Tableau mit Python
- Elasticsearch-Integration
- Allgemeine Feldextraktion
- Selbst gehostete Exchange-Integration
- UiPath® Automatisierungs-Framework
- Offizielle UiPath®-Aktivitäten
- Wie Maschinen lernen, Wörter zu verstehen: eine Anleitung zu Einbettungen in NLP
- Eingabeaufforderungsbasiertes Lernen mit Transformers
- Ef Robots II: Wissensdegesterration und Feinabstimmung
- Effiziente Transformer I: Warnmechanismen
- Tief hierarchische, nicht überwachte Absichtsmodellierung: Nutzen ohne Trainingsdaten
- Beheben von Anmerkungsverzerrungen mit Communications Mining™
- Aktives Lernen: Bessere ML-Modelle in weniger Zeit
- Auf Zahlen kommt es an – Bewertung der Modellleistung mit Metriken
- Darum ist Modellvalidierung wichtig
- Vergleich von Communications Mining™ und Google AutoML für Conversation Data Intelligence
- Lizenzierung
- Häufige Fragen und mehr

Communications Mining-Benutzerhandbuch
Letzte Aktualisierung 7. Okt. 2025
Dieser Abschnitt bietet einen Überblick über die wichtigsten Plattformkonzepte.
To learn more about the platform from an end-user perspective, check the Communications Mining™ user guide.
Konzept | Beschreibung | Beispiel |
---|---|---|
Quelle | In Communications Mining™, data is organized in data sources, or sources. Typically a source corresponds to a channel. An email mailbox, the results of a survey or a set of customer reviews are all examples of data that can be uploaded to Communications Mining as a data source. Multiple sources can be combined to build a model, so it is best to opt for the side of multiple sources rather than a single monolithic source. | Das Diagramm zeigt E-Mail-Daten (Quelle A, die einzelne E-Mails enthält) und Kundenbewertungsdaten (Quellen B und C, die einzelne Kundenbewertungen enthalten). Die Kundenüberprüfungsdaten werden basierend auf der Datenherkunft in zwei Quellen aufgeteilt, aber zum Erstellen eines gemeinsamen Modells in einem einzigen Dataset kombiniert. |
Kommentar (Comment) | Within sources, each individual piece of text communication is represented as a comment. A comment will always have an ID, timestamp, and text body, and additional fields based on what type of data it represents. For example, emails will have the expected email fields such as From, To, Cc, and so on. | The diagram shows how the available comment fields are used by the various comment types. For example, in an email comment the From field contains the sender address, while in a customer review comment it contains the review author. The metadata fields, shown at the bottom of each comment, are user-defined. Note how we use the same set of fields for both customer review sources: since we want to combine them into a single dataset, the data should be consistent in order to ensure good model performance. |
Dataset | A dataset allows you to annotate one or more sources in order to build a model. A source can be included in multiple datasets. The set of all labels in a dataset is called a taxonomy. | The diagram shows two datasets built on top of the support mailbox data, and one dataset combining the customer review data. Note that even though Dataset 1 and Dataset 2 are based on the same data, their label taxonomy is different, because their use-cases, that is, analytics and automation, call for different sets of labels. |
Modell | Das Modell wird kontinuierlich aktualisiert, wenn Benutzer weitere Daten kommentieren. Um konsistente Vorhersagen zu erhalten, muss bei der Abfrage des Modells eine Modellversionsnummer angegeben werden. | |
Label | Labels are applied when training a model, and are returned when querying the model for predictions. When labels are returned as predictions, they have an associated confidence score that indicates how likely the model thinks the prediction applies. To convert the prediction into a Yes or No answer, the confidence score needs to be checked against a threshold, which is chosen to represent a suitable precision/recall tradeoff. | Labels are assigned by Communications Mining users when training the model. The Communications Mining user interface helps the user annotate the most relevant comments, ensure that labels are applied consistently, and that enough comments are annotated to produce a well-performing model. |