- Introdução
- Balanceamento
- Clusters
- Desvio de conceito
- Cobertura
- Conjuntos de dados
- Campos gerais (anteriormente entidades)
- Rótulos (previsões, níveis de confiança, hierarquia etc.)
- Modelos
- Transmissões
- Classificação do Modelo
- Projetos
- Precisão
- Lembrar
- Mensagens revisadas e não revisadas
- Fontes
- Taxonomias
- Treinamento
- Previsões positivos e negativos verdadeiros e falsos
- Validação
- Mensagens
- Administração
- Gerencie origens e conjuntos de dados
- Entender a estrutura de dados e permissões
- Crie ou exclua uma fonte de dados no GUI
- Carregar um arquivo CSV para uma origem
- Preparando dados para carregamento de .CSV
- Criar um conjunto de dados
- Origens e conjuntos de dados multilíngues
- Habilitando o sentimento em um conjunto de dados
- Corrigir configurações de conjunto de dados
- Excluir mensagens por meio da interface do usuário
- Excluir um conjunto de dados
- Exportar um conjunto de dados
- Usando integrações do Exchange
- Treinamento e manutenção do modelo
- Noções Básicas sobre rótulos, campos gerais e metadados
- Hierarquia de rótulo e práticas recomendadas
- Definição dos seus objetivos de taxonomia
- Casos de uso de análise versus automação
- Transformando seus objetivos em rótulos
- Criação da sua estrutura taxonômica
- Práticas recomendadas de design de taxonomia
- Importando sua taxonomia
- Visão geral do processo de treinamento do modelo
- Anotação Generativa (Novo)
- Status do conjunto de dados
- Treinamento de modelos e práticas recomendadas de anotação
- Treinamento com análise de sentimento de rótulo habilitada
- Compreensão dos requisitos de dados
- Treinamento
- Introdução ao Refine
- Precisão e recall explicados
- Precisão e recall
- Como funciona a Validação?
- Compreender e melhorar o desempenho do modelo
- Por que um rótulo pode ter uma precisão média baixa?
- Treinamento usando Check label e Perda de rótulo
- Treinamento usando Ensinar rótulo (Refinar)
- Treinamento usando a Pesquisa (Refinamento)
- Noções Básicas e Aumentando a Cobertura
- Melhorando o balanceamento e usando o Rebalanceamento
- Quando parar de treinar seu modelo
- Uso dos campos gerais
- Extração generativa
- Uso de análise e monitoramento
- Automations e Communications Mining
- Informações de licenciamento
- Perguntas frequentes e mais
Guia do usuário do Communications Mining
Visão geral
Você pode começar a criar sua taxonomia revisando e anotando os dados apresentados nesses clusters. Essa funcionalidade torna o treinamento do modelo mais fácil e rápido para começar, pois encontra grupos natural de mensagens que podem compartilhar rótulos e permite que você anote várias mensagens de uma só vez (além de adicionar rótulos a mensagens individuais conforme necessário).
O Descobrir também pode ser usado para pesquisar mensagens que contenham palavras ou frases-chave, o que pode ser útil se você souber de um termo ou expressão comum relevante que não apareceu em nenhum dos clusters, mas que indicaria que um determinado rótulo deve ser aplicado.
Após uma quantidade significativa de treinamento ser concluída ou um influxo de novos dados, o Discover pesquisará novos clusters para apresentar a você e, dessa forma, ele atua como uma maneira útil para você continuar encontrando coisas interessantes em seus dados. Isso é particularmente verdadeiro se você tiver uma integração de dados ao vivo configurada, pois novas mensagens serão adicionadas continuamente ao conjunto de dados e podem conter novas intenções e conceitos.