communications-mining
latest
false
- Introdução
- Balanceamento
- Clusters
- Desvio de conceito
- Cobertura
- Conjuntos de dados
- Campos gerais (anteriormente entidades)
- Rótulos (previsões, níveis de confiança, hierarquia etc.)
- Modelos
- Transmissões
- Classificação do Modelo
- Projetos
- Precisão
- Lembrar
- Mensagens revisadas e não revisadas
- Fontes
- Taxonomias
- Treinamento
- Previsões positivos e negativos verdadeiros e falsos
- Validação
- Mensagens
- Administração
- Gerencie origens e conjuntos de dados
- Entender a estrutura de dados e permissões
- Create or delete a data source in the GUI
- Carregar um arquivo CSV para uma origem
- Preparando dados para carregamento de .CSV
- Criar um conjunto de dados
- Origens e conjuntos de dados multilíngues
- Habilitando o sentimento em um conjunto de dados
- Corrigir configurações de conjunto de dados
- Excluir mensagens por meio da interface do usuário
- Excluir um conjunto de dados
- Exportar um conjunto de dados
- Usando integrações do Exchange
- Treinamento e manutenção do modelo
- Noções Básicas sobre rótulos, campos gerais e metadados
- Hierarquia de rótulo e práticas recomendadas
- Definição dos seus objetivos de taxonomia
- Casos de uso de análise versus automação
- Transformando seus objetivos em rótulos
- Criação da sua estrutura taxonômica
- Práticas recomendadas de design de taxonomia
- Importando sua taxonomia
- Visão geral do processo de treinamento do modelo
- Anotação Generativa (Novo)
- Status do conjunto de dados
- Treinamento de modelos e práticas recomendadas de anotação
- Treinamento com análise de sentimento de rótulo habilitada
- Compreensão dos requisitos de dados
- Treinamento
- Introdução ao Refine
- Precisão e recall explicados
- Precisão e recall
- Como funciona a Validação?
- Compreender e melhorar o desempenho do modelo
- Por que um rótulo pode ter uma precisão média baixa?
- Treinamento usando Check label e Perda de rótulo
- Treinamento usando Ensinar rótulo (Refinar)
- Treinamento usando a Pesquisa (Refinamento)
- Noções Básicas e Aumentando a Cobertura
- Melhorando o balanceamento e usando o Rebalanceamento
- Quando parar de treinar seu modelo
- Uso dos campos gerais
- Extração generativa
- Uso de análise e monitoramento
- Automations e Communications Mining
- Informações de licenciamento
- Perguntas frequentes e mais
Classificação do Modelo
Importante :
Este conteúdo foi traduzido com auxílio de tradução automática.
Guia do usuário do Communications Mining
Última atualização 20 de dez de 2024
Classificação do Modelo
A plataforma ajuda os usuários a treinar modelos calculando uma Classificação holística do modelo, que avalia a integridade e o desempenho gerais do modelo considerando vários fatores importantes.
Essa classificação é uma pontuação proprietária criada para garantir que nossos usuários criem modelos com um bom desempenho em todas as áreas mais importantes.
Os quatro principais fatores que a classificação leva em consideração são:
- Saldo - esse fator avalia se os dados de treinamento são um representante equilibrado do conjunto de dados como um todo
- Rótulos com baixo desempenho - avalia o desempenho dos 10% dos rótulos que têm os avisos mais significativos
- Cobertura — avalia o quão bem o conjunto de dados como um todo é coberto por previsões para rótulos informativos
- Todos os rótulos - avalia o desempenho médio de rótulos olhando para cada rótulo na taxonomia
Classificação de modelo de exemplo na validação