- Introduction
- Configuration de votre compte
- Équilibre
- Clusters
- Dérive de concept
- Couverture
- Jeux de données
- Champs généraux
- Libellés (prédictions, niveaux de confiance, hiérarchie des libellés et sentiment des libellés)
- Modèles
- Flux
- Évaluation du modèle
- Projets
- Précision
- Rappel
- Messages annotés et non annotés
- Extraction des champs
- Sources
- Taxonomies
- Apprentissage
- Prédictions positives et négatives vraies et fausses
- Validation
- Messages
- Contrôle et administration de l'accès
- Gérer les sources et les jeux de données
- Comprendre la structure des données et les autorisations
- Créer ou supprimer une source de données dans l'interface graphique
- Téléchargement d’un fichier CSV dans une source
- Préparation des données en vue du téléchargement du fichier .CSV
- Création d'un ensemble de données
- Sources et jeux de données multilingues
- Activation des sentiments sur un ensemble de données
- Modification des paramètres du jeu de données
- Supprimer un message
- Supprimer un jeu de données
- Exporter un ensemble de données
- Utilisation d'intégrations Exchange
- Entraînement et maintenance du modèle
- Comprendre les libellés, les champs généraux et les métadonnées
- Hiérarchie de libellés et meilleures pratiques
- Comparer les cas d’utilisation des analyses et des automatisations
- Transformer vos objectifs en libellés
- Présentation du processus d'entraînement du modèle
- Annotation générative
- Statut du jeu de données
- Entraînement des modèles et annotation des meilleures pratiques
- Entraînement avec l'analyse des sentiments des libellés activée
- Entraînement des données de chat et d'appels
- Comprendre les exigences de données
- Entraîner
- Vue d'ensemble (Overview)
- Examen des prédictions de libellé
- Entraînement à l'aide de la classification par glisser-déposer
- Entraînement à l'aide de l'option Enseigner le libellé (Explore)
- Entraînement à l'aide d'une confiance faible
- Entraînement à l'aide de la recherche (Explorer)
- Affiner et réorganiser votre taxonomie
- Introduction à affiner
- Précision et rappel expliqués
- Précision et rappel
- Comment fonctionne la validation
- Comprendre et améliorer les performances du modèle
- Raisons de la faible précision moyenne des libellés
- Entraînement à l'aide du libellé Vérifier (Check label) et du libellé Manqué (Missed Label)
- Entraînement à l'aide du libellé En savoir plus (Affiner)
- Entraînement à l'aide de la recherche (affiner)
- Comprendre et augmenter la couverture
- Amélioration de l'équilibre et utilisation du rééquilibrage
- Quand arrêter l'entraînement de votre modèle
- Utilisation de champs généraux
- Extraction générative
- Vue d'ensemble (Overview)
- Configurer des champs
- Filtrage par type de champ d’extraction
- Génération de vos extractions
- Validation et annotation des extractions générées
- Meilleures pratiques et considérations
- Comprendre la validation des extractions et des performances d'extraction
- Questions fréquemment posées (FAQ)
- Utilisation des analyses et de la surveillance
- Automations et Communications Mining™
- Développeur
- Charger des données
- Téléchargement de données
- Intégration avec l'utilisateur du service Azure
- Intégration avec l'authentification d'application Azure
- Intégration d’Exchange avec l’authentification et le graphique d’application Azure
- Récupérer des données pour Tableau avec Python
- Intégration d'Elasticsearch
- Extraction de champ général
- Intégration avec Exchange auto-hébergée
- Infrastructure d’automatisation UiPath®
- Activités officielles UiPath®
- Comment les machines apprennent à comprendre les mots : guide d'intégration dans NLP
- Apprentissage basé sur des invites avec des Transformers
- Efficient Transformers II : Dilarisation des connaissances et affinement
- Transformateurs efficaces I : mécanismes d'attention
- Modélisation de l'intention hiérarchique profonde non supervisée : obtenir de la valeur sans données d'entraînement
- Correction des biais d’annotation avec Communications Mining™
- Apprentissage actif : de meilleurs modèles d'ML en moins de temps
- Tout est dans les chiffres : évaluer les performances du modèle avec des métriques
- Pourquoi la validation du modèle est importante
- Comparaison de Communications Mining™ et de Google AutoML pour l’information sur des données conversationnelles
- Licences
- FAQ et plus encore

Guide de l’utilisateur de Communications Mining
Cette section détaille certaines des principales raisons pour lesquelles un libellé peut avoir une précision moyenne faible, ainsi qu'une solution suggérée pour l'améliorer :
1. La taille de l'ensemble d'entraînement est peut-être trop petite
- Si la taille de l'ensemble d'entraînement est assez petite, il vous suffit peut-être de fournir plus d'exemples d'entraînement pour le modèle
- Continuez à entraîner le libellé à l'aide des méthodes décrites dans la phase d'exploration , notamment Mélanger et «Apprentissage du libellé »
2. Le libellé peut avoir été appliqué de manière incohérente ou incorrecte à certains des messages
- Il arrive souvent que la définition d'un libellé d'un utilisateur change au fil du temps, et les anciens messages révisés avec ce libellé peuvent nécessiter une révision pour voir si le libellé s'applique toujours
- Alternativement, s’il y a plusieurs utilisateurs qui entraînent un ensemble de données, ils peuvent avoir des interprétations de chaque étiquette et envoyer des messages mixtes au modèle
- Pour déterminer si tel est le cas, les utilisateurs peuvent utiliser les modes Vérifier le libellé et Entraînement de libellé Manqué pour parcourir les messages examinés du libellé et voir où un libellé a été appliqué de manière incorrecte ou s'il est omis.
- Les utilisateurs peuvent ensuite corriger les erreurs et mettre à jour les libellés pour assurer la cohérence.
- À l'avenir, s'il y a plusieurs utilisateurs qui entraînent un ensemble de données, ils doivent s'assurer qu'ils sont entièrement alignés sur la façon dont ils définissent les intentions ou les concepts couverts par chaque libellé.
3. L'intention ou le concept que le libellé est destiné à capturer peut être imprévisible ou très étendu et difficile à distinguer des autres libellés
- Si une étiquette est utilisée pour capturer une intention ou un concept très large ou imprévisible, il peut être difficile pour le modèle d'identifier les raisons pour lesquelles cette étiquette doit s'appliquer à un message. Il peut alors essayer de l'appliquer à beaucoup trop de messages
- Essayez de ne pas être trop générique lors de la création d'un libellé ; elle doit être identifiable et distincte des autres libellés
4. Alternativement, l’intention ou le concept peut être très spécifique ou avoir trop de couches dans sa hiérarchie
- Essayer d'être trop spécifique ou d'ajouter de nombreuses couches à la hiérarchie d'un libellé peut rendre trop difficile la détection par le modèle ou la distinguer des couches précédentes
- Le niveau de spécificité d'un libellé doit correspondre au contenu des messages. S'il est trop spécifique pour se distinguer de manière réaliste d'autres libellés similaires dans la hiérarchie, le modèle peut se tromper
- Dans la plupart des cas, il est recommandé d'avoir trois couches ou moins dans la hiérarchie d'un libellé – c'est-à-dire [Libellé racine] > [Libellé de connexion] > [Libellé de feuille]
5. Il peut y avoir plusieurs libellés dans la taxonomie qui se chevauchent fortement, et le modèle a du mal à faire la distinction entre les deux
- Si vous avez deux libellés très similaires et difficiles à distinguer l'un de l'autre, il peut confondre le modèle, car il ne saura pas lequel des deux libellés s'applique
- Dans ces cas, envisagez de fusionner les libellés
- Vous pouvez également parcourir les messages examinés pour chacun et vous assurer que les concepts sont appliqués de manière cohérente et sont distincts les uns des autres
6. Les messages auxquels cette étiquette est appliquée peuvent pour la plupart être très similaires ou identiques, et le modèle a du mal à détecter différentes manières d'exprimer la même intention ou concept
- Vous devez vous assurer que pour chaque étiquette, vous fournissez au modèle plusieurs exemples d'entraînement qui incluent différentes manières d'exprimer l'intention ou le concept que l'étiquette est destinée à capturer
7. L'intention ou le concept capturé par cette étiquette n'est pas sémantiquement inférable à partir du texte du message ou il prend en charge les métadonnées
- Il est courant que les utilisateurs annotent un message en fonction de leurs propres connaissances professionnelles du contexte ou du processus qui suivraient, et non selon le texte ou les métadonnées du message
- Par exemple, un utilisateur de SME peut savoir que parce que la communication provient d'un individu donné, elle doit porter sur un certain sujet, même si rien d'autre dans le texte ou les métadonnées n'indique clairement que le libellé doit s'appliquer
- Dans ce cas, les utilisateurs ne doivent appliquer le libellé que si le modèle serait capable de le détecter à partir du texte ou des métadonnées, sans cette connaissance interne.