- Introduction
- Configuration de votre compte
 - Équilibre
 - Clusters
 - Dérive de concept
 - Couverture
 - Jeux de données
 - Champs généraux
 - Libellés (prédictions, niveaux de confiance, hiérarchie des libellés et sentiment des libellés)
 - Modèles
 - Flux
 - Évaluation du modèle
 - Projets
 - Précision
 - Rappel
 - Messages annotés et non annotés
 - Extraction des champs
 - Sources
 - Taxonomies
 - Apprentissage
 - Prédictions positives et négatives vraies et fausses
 - Validation
 - Messages
 
 - Contrôle et administration de l'accès
 - Gérer les sources et les jeux de données
- Comprendre la structure des données et les autorisations
 - Créer ou supprimer une source de données dans l'interface graphique
 - Téléchargement d’un fichier CSV dans une source
 - Préparation des données en vue du téléchargement du fichier .CSV
 - Création d'un ensemble de données
 - Sources et jeux de données multilingues
 - Activation des sentiments sur un ensemble de données
 - Modification des paramètres du jeu de données
 - Supprimer un message
 - Supprimer un jeu de données
 - Exporter un ensemble de données
 - Utilisation d'intégrations Exchange
 
 - Entraînement et maintenance du modèle
- Comprendre les libellés, les champs généraux et les métadonnées
 - Hiérarchie de libellés et meilleures pratiques
 - Comparer les cas d’utilisation des analyses et des automatisations
 - Transformer vos objectifs en libellés
 - Présentation du processus d'entraînement du modèle
 - Annotation générative
 - Statut du jeu de données
 - Entraînement des modèles et annotation des meilleures pratiques
 - Entraînement avec l'analyse des sentiments des libellés activée
 
- Comprendre les exigences de données
 - Entraîner
 - Vue d'ensemble (Overview)
 - Examen des prédictions de libellé
 - Entraînement à l'aide de la classification par glisser-déposer
 - Entraînement à l'aide de l'option Enseigner le libellé (Explore)
 - Entraînement à l'aide d'une confiance faible
 - Entraînement à l'aide de la recherche (Explorer)
 - Affiner et réorganiser votre taxonomie
 
- Introduction à affiner
 - Précision et rappel expliqués
 - Précision et rappel
 - Comment fonctionne la validation
 - Comprendre et améliorer les performances du modèle
 - Raisons de la faible précision moyenne des libellés
 - Entraînement à l'aide du libellé Vérifier (Check label) et du libellé Manqué (Missed Label)
 - Entraînement à l'aide du libellé En savoir plus (Affiner)
 - Entraînement à l'aide de la recherche (affiner)
 - Comprendre et augmenter la couverture
 - Amélioration de l'équilibre et utilisation du rééquilibrage
 - Quand arrêter l'entraînement de votre modèle
 
- Utilisation de champs généraux
 
 - Extraction générative
- Vue d'ensemble (Overview)
 - Configurer des champs
 - Filtrage par type de champ d’extraction
 - Génération de vos extractions
 - Validation et annotation des extractions générées
 - Meilleures pratiques et considérations
 - Comprendre la validation des extractions et des performances d'extraction
 - Questions fréquemment posées (FAQ)
 
 - Utilisation des analyses et de la surveillance
 - Automations et Communications Mining™
 - Développeur
- Charger des données
 - Téléchargement de données
 - Intégration avec l'utilisateur du service Azure
 - Intégration avec l'authentification d'application Azure
 - Intégration d’Exchange avec l’authentification et le graphique d’application Azure
 - Récupérer des données pour Tableau avec Python
 - Intégration d'Elasticsearch
 - Extraction de champ général
 - Intégration avec Exchange auto-hébergée
 - Infrastructure d’automatisation UiPath®
 - Activités officielles UiPath®
 
- Comment les machines apprennent à comprendre les mots : guide d'intégration dans NLP
 - Apprentissage basé sur des invites avec des Transformers
 - Efficient Transformers II : Dilarisation des connaissances et affinement
 - Transformateurs efficaces I : mécanismes d'attention
 - Modélisation de l'intention hiérarchique profonde non supervisée : obtenir de la valeur sans données d'entraînement
 - Correction des biais d’annotation avec Communications Mining™
 - Apprentissage actif : de meilleurs modèles d'ML en moins de temps
 - Tout est dans les chiffres : évaluer les performances du modèle avec des métriques
 - Pourquoi la validation du modèle est importante
 - Comparaison de Communications Mining™ et de Google AutoML pour l’information sur des données conversationnelles
 
 - Licences
 - FAQ et plus encore
 

Guide de l’utilisateur de Communications Mining
Si vous avez un libellé qui rencontre des difficultés à prévoir avec précision et que vous êtes satisfait de la cohérence des exemples déjà épinglés, il est probable que vous ayez besoin de fournir au modèle des exemples d'entraînement plus variés et plus cohérents.
La plate-forme suggérera ce mode comme action recommandée pour les libellés qui en bénéficieraient le plus sous les facteurs d’évaluation du modèle , ainsi que dans les actions recommandées pour des libellés spécifiques que vous pouvez sélectionner dans Validation.
La meilleure méthode pour entraîner la plate-forme sur les instances où il est difficile de prédire si un libellé s’applique ou non est d’utiliser l’option Apprendre pour les messages non examinés.
Comme ce mode vous montre les prédictions d'un libellé avec des scores de confiance allant de 50 % ou de 66 % dans le cas d'un ensemble de données activé par le sentiment, le fait d'accepter ou de corriger ces prédictions envoie des indicateurs d'entraînement beaucoup plus puissants au modèle que si vous le faisiez acceptent les prédictions avec des scores de confiance de 90 % ou plus. De cette façon, vous pouvez rapidement améliorer les performances d'un libellé en fournissant des exemples d'entraînement variés dont la plateforme n'était auparavant pas informée.
Le processus réel d’annotation dans ce mode est couvert dans la phase Explorer. Pour plus de détails, consultez Entraîner à l'aide de l'apprentissage des libellés (Explorer).