ixp
latest
false
- Introduction
- Configuration de votre compte
- Équilibre
- Clusters
- Dérive de concept
- Couverture
- Jeux de données
- Champs généraux
- Libellés (prédictions, niveaux de confiance, hiérarchie des libellés et sentiment des libellés)
- Modèles
- Flux
- Évaluation du modèle
- Projets
- Précision
- Rappel
- Messages annotés et non annotés
- Extraction des champs
- Sources
- Taxonomies
- Apprentissage
- Prédictions positives et négatives vraies et fausses
- Validation
- Messages
- Contrôle et administration des accès
- Gérer les sources et les jeux de données
- Comprendre la structure des données et les autorisations
- Créer ou supprimer une source de données dans l'interface graphique
- Téléchargement d’un fichier CSV dans une source
- Préparation des données en vue du téléchargement du fichier .CSV
- Création d'un ensemble de données
- Sources et jeux de données multilingues
- Activation des sentiments sur un ensemble de données
- Modification des paramètres du jeu de données
- Supprimer un message
- Supprimer un jeu de données
- Exporter un ensemble de données
- Utilisation d'intégrations Exchange
- Entraînement et maintenance du modèle
- Comprendre les libellés, les champs généraux et les métadonnées
- Hiérarchie de libellés et meilleures pratiques
- Comparer les cas d’utilisation des analyses et des automatisations
- Transformer vos objectifs en libellés
- Présentation du processus d'entraînement du modèle
- Annotation générative
- Statut du jeu de données
- Entraînement des modèles et annotation des meilleures pratiques
- Entraînement avec l'analyse des sentiments des libellés activée
- Entraînement des données de chat et d'appels
- Comprendre les exigences de données
- Entraîner
- Vue d'ensemble (Overview)
- Examen des prédictions de libellé
- Entraînement à l'aide de la classification par glisser-déposer
- Entraînement à l'aide de l'option Enseigner le libellé (Explore)
- Entraînement à l'aide d'une confiance faible
- Entraînement à l'aide de la recherche (Explorer)
- Affiner et réorganiser votre taxonomie
- Introduction à affiner
- Précision et rappel expliqués
- Précision et rappel
- Comment fonctionne la validation
- Comprendre et améliorer les performances du modèle
- Raisons de la faible précision moyenne des libellés
- Entraînement à l'aide du libellé Vérifier (Check label) et du libellé Manqué (Missed Label)
- Entraînement à l'aide du libellé En savoir plus (Affiner)
- Entraînement à l'aide de la recherche (affiner)
- Comprendre et augmenter la couverture
- Amélioration de l'équilibre et utilisation du rééquilibrage
- Quand arrêter l'entraînement de votre modèle
- Épingler et baliser une version de modèle
- Suppression d'un modèle épinglé
- Ajout de nouveaux libellés aux taxonomies existantes
- Maintenir un modèle en production
- Restauration du modèle
- Utilisation de champs généraux
- Extraction générative
- Vue d'ensemble (Overview)
- Configurer des champs
- Filtrage par type de champ d’extraction
- Génération de vos extractions
- Validation et annotation des extractions générées
- Meilleures pratiques et considérations
- Comprendre la validation des extractions et des performances d'extraction
- Questions fréquemment posées (FAQ)
- Utilisation des analyses et de la surveillance
- Automations et Communications Mining™
- Développeur
- Intégration avec l'utilisateur du service Azure
- Intégration avec l'authentification d'application Azure
- Intégration d’Exchange avec l’authentification et le graphique d’application Azure
- Récupérer des données pour Tableau avec Python
- Intégration d'Elasticsearch
- Intégration avec Exchange auto-hébergée
- Infrastructure d’automatisation UiPath®
- Activités UiPath® Marketplace
- Activités officielles UiPath®
- Comment les machines apprennent à comprendre les mots : guide d'intégration dans NLP
- Apprentissage basé sur des invites avec des Transformers
- Efficient Transformers II : Dilarisation des connaissances et affinement
- Transformateurs efficaces I : mécanismes d'attention
- Modélisation de l'intention hiérarchique profonde non supervisée : obtenir de la valeur sans données d'entraînement
- Correction des biais d’annotation avec Communications Mining™
- Apprentissage actif : de meilleurs modèles d'ML en moins de temps
- Tout est dans les chiffres : évaluer les performances du modèle avec des métriques
- Pourquoi la validation du modèle est importante
- Comparaison de Communications Mining™ et de Google AutoML pour l’information sur des données conversationnelles
- Licences
- FAQ et plus encore

Guide de l’utilisateur de Communications Mining
Dernière mise à jour 11 août 2025
Remarque : vous devez avoir attribué les autorisations Source - Lecture et Ensemble de données - Lecture en tant qu'utilisateur d'Automation Cloud, ou les autorisations Afficher les sources et Afficher les libellés en tant qu'utilisateur hérité.
Chaque fois que vous entraînez la plateforme sur vos données, c'est-à-dire que vous annotez des messages, une nouvelle version du modèle associée à votre ensemble de données est créée. Ces modèles étant volumineux et complexes, les versions précédentes ne sont pas automatiquement stockées dans nos bases de données, car les exigences de stockage seraient extrêmement élevées.
La dernière version du modèle sera toujours facilement disponible, mais les utilisateurs pourront épingler une version de modèle spécifique qu’ils souhaitent enregistrer. Ils peuvent également choisir de baliser les modèles épinglés avec une balise Live ou Staging .
- Le fait d'épingler un modèle vous donne du déterminisme par rapport aux prédictions, en particulier lorsque vous utilisez des flux. Cela signifie que vous pouvez être sûr des scores de précision et de rappel pour cette version du modèle, et que les futurs événements d'entraînement ne les modifieront pas.
- Sur la page Validation , vous pouvez afficher les scores de validation des précédentes versions de modèle épinglées. Cela vous permet de comparer les scores au fil du temps et de voir comment votre entraînement a amélioré votre modèle.
Pour épingler une version de modèle :
- Accédez à la page des modèles à l'aide de la barre de navigation.
- Sélectionnez le bouton bascule pour enregistrer la version actuelle du modèle.
Afin de mettre à jour la balise d'une version de modèle, procédez comme suit :
- Sélectionnez la flèche pour les balises de n'importe quel modèle épinglé.
- Sélectionnez Dynamique ou Organisation, en fonction du statut du modèle épinglé dans les déploiements en aval.