- Erste Schritte
- Ausgewogenheit
- Cluster
- Konzeptabweichung
- Abdeckung
- Datasets
- Allgemeine Felder (früher Entitäten)
- Bezeichnungen (Vorhersagen, Konfidenzniveaus, Hierarchie usw.)
- Modelle
- Streams
- Modellbewertung
- Projekte
- Präzision
- Rückruf
- Überprüfte und nicht überprüfte Nachrichten
- Quellen
- Taxonomien
- Training
- „True“ und „false“ positive und negative Vorhersagen
- Validierung
- Messages
- Verwaltung
- Verwalten Sie Quellen und Datasets
- Verstehen der Datenstruktur und -berechtigungen
- Erstellen Sie eine Datenquelle in der GUI
- Hochladen einer CSV-Datei in eine Quelle
- Ein neues Dataset erstellen
- Mehrsprachige Quellen und Datasets
- Aktivieren der Stimmung für ein Dataset
- Ändern Sie die Einstellungen eines Datasets
- Löschen Sie Nachrichten über die Benutzeroberfläche
- Löschen Sie ein Dataset
- Löschen Sie eine Quelle
- Exportieren Sie ein Dataset
- Verwenden von Exchange-Integrationen
- Vorbereiten von Daten für den CSV-Upload
- Modelltraining und -wartung
- Verstehen von Beschriftungen, allgemeinen Feldern und Metadaten
- Bezeichnungshierarchie und bewährte Methode
- Definieren Ihrer Taxonomieziele
- Analyse- vs. Automatisierungsanwendungsfälle
- Konvertieren Ihrer Ziele in Bezeichnungen
- Erstellen Ihrer Taxonomiestruktur
- Best Practices für den Taxonomieentwurf
- Ihre Taxonomie wird importiert
- Übersicht über den Modelltrainingsprozess
- Generative Anmerkung (NEU)
- Der Status des Datasets
- Best Practice für Modelltraining und Anmerkungen
- Training mit aktivierter Beschriftungs-Stimmungsanalyse
- Trainieren
- Einführung in Verfeinerung
- Erläuterungen zu Präzision und Rückruf
- Präzision und Rückruf
- Wie funktioniert die Validierung?
- Verstehen und Verbessern der Modellleistung
- Warum kann eine Bezeichnung eine geringe durchschnittliche Genauigkeit haben?
- Training mit Beschriftung „Überprüfen“ und Beschriftung „Verpasst“.
- Training mit der Bezeichnung „Teach“ (Verfeinern)
- Training mit der Suche (verfeinern)
- Verstehen und Erhöhen der Abdeckung
- Verbesserung des Abgleichs und Verwendung des Abgleichs
- Wann das Training Ihres Modells beendet werden soll
- Verwenden von allgemeinen Feldern
- Generative Extraktion
- Verwenden von Analyse und Überwachung
- Automatisierungs- und Communications Mining
- Lizenzierungsinformationen
- Häufige Fragen und mehr
Training
Training oder Modelltraining ist der Prozess, durch den ein Benutzer Communications Mining™ beibringen, welche Beschriftungen und allgemeinen Felder für Nachrichten gelten, damit dieses Verständnis in großem Umfang auf das gesamte Dataset angewendet werden kann.
Ein Benutzer trainiert , indem er Nachrichten manuell überprüft und alle relevanten Beschriftungen und allgemeinen Felder anwendet.
Jedes Mal, wenn ein Benutzer einige Zeit damit verbringt, Nachrichten zu überprüfen, wird ein erneutes Trainingsereignis ausgelöst , bei dem die Plattform die neu überprüften Nachrichten verwendet, um ihr Verständnis der Bezeichnungskonzepte und allgemeinen Felder zu verbessern.
Nach jedem erneuten Trainingsereignis überprüft das Modell alle nicht überprüften Nachrichten im Dataset erneut und aktualisiert die vorhergesagten Beschriftungen und allgemeinen Felder und deren zugehörige Konfidenzwerte (und die Stimmung für Beschriftungen, wenn die Beschriftungsstimmung aktiviert ist).