communications-mining
latest
false
Wichtig :
Dieser Inhalt wurde maschinell übersetzt.
UiPath logo, featuring letters U and I in white

Communications Mining-Benutzerhandbuch

Letzte Aktualisierung 20. Dez. 2024

Abdeckung

Die Abdeckung ist ein häufig verwendeter Begriff im Machine Learning und bezieht sich darauf, wie gut ein Modell die Daten „abdeckt“, die es analysieren wird. In Communications Mining™ bezieht sich dies auf den Anteil der Nachrichten im Dataset, die informative Beschriftungsvorhersagen haben, und wird in der Validierung als prozentualer Wert dargestellt.

'Informative Bezeichnungen ' sind solche Bezeichnungen, die die Plattform als nützlich als eigenständige Bezeichnungen versteht, indem sie betrachtet, wie häufig sie mit anderen Bezeichnungen zugewiesen werden. Bezeichnungen, die immer einer anderen Bezeichnung zugewiesen sind, z. B übergeordnete Bezeichnungen, die nie selbst zugewiesen werden, oder „Dringend“, wenn sie immer mit einer anderen Bezeichnung zugewiesen werden, werden bei der Berechnung der Punktzahl nach unten gewichtet.

Die folgende Abbildung gibt einen Hinweis darauf, wie eine geringe Abdeckung im Vergleich zu einer hohen Abdeckung in einem gesamten Dataset aussehen würde. Stellen Sie sich vor, die schattierten Kreise sind Nachrichten mit informativen Bezeichnungsvorhersagen.



Als Metrik ist die Abdeckung eine sehr hilfreiche Methode, um zu verstehen, ob Sie all die verschiedenen potenziellen Konzepte in Ihrem Dataset erfasst haben und ob Sie genügend unterschiedliche Trainingsbeispiele für sie zur Verfügung gestellt haben , damit die Plattform sie effektiv vorhersagen kann.

In fast allen Fällen ist die Leistung eines Modells umso besser, je höher die Abdeckung ist. Dies sollte jedoch bei der Überprüfung der Modellleistung nicht isoliert betrachtet werden .

Es ist auch sehr wichtig, dass die Beschriftungen in der Taxonomie fehlerfrei sind, d. h. eine hohe durchschnittliche Genauigkeit und keine anderen Leistungswarnungen aufweisen und dass die Trainingsdaten ein ausgewogenes Abbild des Datasets als Ganzes sind.

Wenn Ihre Beschriftungen fehlerhaft sind oder die Trainingsdaten nicht repräsentativ für das Dataset sind, ist die Abdeckung Ihres Modells, die die Plattform berechnet , unzuverlässig.

Eine hohe Abdeckung Ihres Modells ist besonders wichtig, wenn Sie es zur Steuerung von automatisierten Prozessen verwenden.

Weitere Informationen zur Modellabdeckung und zum Überprüfen der Abdeckung Ihres Modells finden Sie hier.

War diese Seite hilfreich?

Hilfe erhalten
RPA lernen – Automatisierungskurse
UiPath Community-Forum
Uipath Logo White
Vertrauen und Sicherheit
© 2005–2024 UiPath. Alle Rechte vorbehalten