- Notas de versão
- Antes de começar
- Introdução
- Integrações
- Como trabalhar com aplicativos de processo
- Como trabalhar com painéis e gráficos
- Como trabalhar com gráficos de processo
- Trabalhando com Descubra modelos de processo e Importar modelos BPMN
- Showing or hiding the menu
- Informações de contexto
- Exportar
- Filtros
- Envio de ideias de automação ao UiPath® Automation Hub
- Tags
- Datas de conclusão
- Comparar
- Verificação de conformidade
- Análise de causa raiz
- Simulação de Potencial de Automação
- Triggering an automation from a process app
- Exibição de dados do processo
- Criação de aplicativos
- Carregamento de dados
- Personalização de aplicativos de processo
- Publicação de painéis
- Modelos de apps
- Recursos adicionais
Transformações
As transformações de um aplicativo de processo consistem em um projeto dbt . Abaixo está uma descrição do conteúdo de uma pasta de projeto dbt .
Pasta/Arquivo |
Contém |
---|---|
|
o pacote
pm_utils e suas macros.
|
|
logs criados ao executar dbt. |
|
macros personalizadas. |
|
.sql arquivos que definem as transformações.
|
|
.yml arquivos que definem testes nos dados.
|
|
.csv arquivos com definições de configuração.
|
|
as configurações do projeto dbt. |
Veja o exemplo abaixo.
O arquivo dbt_project.yml contém as configurações do projeto dbt que definem suas transformações. A seção vars contém variáveis que são usadas nas transformações.
Formato de data/hora
Cada modelo de aplicativo contém variáveis que determinam o formato para análise de dados de data/hora. Essas variáveis devem ser ajustadas se os dados de entrada tiverem um formato de data/hora diferente do esperado.
.sql
no diretório models\
. As transformações de dados são organizadas em um conjunto padrão de subdiretórios:
1_input
,2_entities
,3_events
,4_event_logs
,5_business_logic
.
Consulte Estrutura das transformações.
.sql
são escritos em SQL Jinja, o que permite inserir instruções Jinja dentro de consultas SQL simples. Quando dbt executa todos os arquivos .sql
, cada arquivo .sql
resulta em uma nova exibição ou tabela no banco de dados.
.sql
têm a seguinte estrutura:
-
Instruções With: Uma ou mais instruções with para incluir as subtabelas necessárias.
{{ ref(‘My_table) }}
refere-se à tabela definida por outro .sql arquivo.{{ source(var("schema_sources"), 'My_table') }}
refere-se a uma tabela de entrada.
- Consulta principal: a consulta que define a nova tabela.
-
Consulta final: Normalmente, uma consulta como
Select * from table
é usada no final. Isso facilita fazer subseleções durante a depuração.
Para obter mais dicas sobre como escrever transformações de forma eficaz, consulte Dicas para escrever SQL
models\schema\sources.yml
. Dessa forma, outros modelos podem se referir a ele usando {{ source(var("schema_sources"), 'My_table') }}
. Veja a ilustração abaixo para um exemplo.
sources.yml
.
Para obter mais informações sobre o uso de tabelas de origem em consultas, consulte Estrutura das transformações:1. Entrada. Para obter informações mais detalhadas, consulte a documentação oficial do dbt sobre Origens.
As transformações de dados devem gerar o modelo de dados exigido pelo aplicativo correspondente; cada tabela e campo esperados devem estar presentes.
models\5_business_logic
não devem ser excluídas. Além disso, os campos de saída nas consultas correspondentes não devem ser removidos.
Se você quiser adicionar novos campos ao seu aplicativo de processo, você pode adicionar esses campos nas transformações.
dbt docs
para gerar um site de documentação para seu projeto dbt e abri-lo em seu navegador padrão. O site de documentação também contém um gráfico de linhagem que fornece um diagrama de relacionamento de entidade com uma representação gráfica da ligação entre cada tabela de dados em seu projeto.
dbt docs
.
As macros facilitam a reutilização de construções SQL comuns. Para obter informações detalhadas, consulte a documentação oficial do dbt sobre macros Jinja.
pm-utils
contém um conjunto de macros que são normalmente usados em transformações do Process Mining. Para obter mais informações sobre as macros pm_utils
, consulte ProcessMining-pm-utils.
pm_utils.optional()
.
csv
que são usados para adicionar tabelas de dados às suas transformações. Para informações detalhadas, consulte a documentação oficial do dbt sobre semente jinja.
Em Process Mining, isso é normalmente usado para facilitar a configuração de mapeamentos em suas transformações.
Depois de editar os arquivos seed, esses arquivos não são atualizados automaticamente no banco de dados imediatamente. Para instruir o dbt a carregar o novo conteúdo do arquivo seed no banco de dados, execute
dbt seed
- que atualizará apenas as tabelas do arquivo seed ou-
dbt build
- que também executará todos os modelos e testes.Nota: Se o arquivo seed não tiver registros de dados inicialmente, os tipos de dados no banco de dados podem não ter sido configurados corretamente. Para corrigir isso, chamerun dbt seed --full-refresh
. Isso também atualizará o conjunto de colunas no banco de dados.
models\schema\
contém um conjunto de arquivos .yml
que definem testes. Estes validam a estrutura e o conteúdo dos dados esperados. Para obter informações detalhadas, consulte a documentação oficial do dbt sobre testes.
sources.yml
são executados em cada ingestão de dados. Isso é feito para verificar se os dados de entrada estão formatados corretamente.
As transformações de dados são usadas para transformar dados de entrada em dados adequados para o Process Mining. As transformações no Process Mining são escritas como projetos dbt .
Esta página apresenta uma introdução ao dbt. Para obter informações mais detalhadas, consulte a documentação oficial do dbt.
pm_utils
. Este pacote pm-utils
contém funções e macros de utilitário para projetos de dbt do Process Mining. Para obter mais informações sobre o pm_utils
, consulte ProcessMining-pm-utils.
pm-utils
, adicionando novas funções.
pm-utils
é lançada, é recomendável atualizar a versão usada em suas transformações para garantir que você esteja usando as funções e macros mais recentes do pacote pm-utils
.
pm-utils
no painel Versões do ProcessMining-pm-utils.
pm-utils
em suas transformações.
-
Baixe o código-fonte (zip) da versão de
pm-utils
. -
Extraia o arquivo
zip
e renomeie a pasta para pm_utils. -
Exporte as transformações do editor de transformações de dados embutidos e extraia os arquivos.
-
Substitua a pasta pm_utils das transformações exportadas pela nova pasta pm_utils .
-
Compacte o conteúdo das transformações novamente e importe-as no editor Transformações de dados .