ai-center
latest
false
- リリース ノート
- 基本情報
- 通知
- プロジェクト
- データセット
- データのラベル付け
- ML パッケージ
- すぐに使えるパッケージ
- 概要
- English Text Classification (英語テキスト分類)
- French Text Classification (フランス語テキスト分類)
- Japanese Text Classification (日本語テキスト分類)
- Object Detection (オブジェクト検出)
- Text Classification (テキスト分類)
- TPOT AutoML Classification (TPOT AutoML分類)
- TPOT AutoML Regression (TPOT AutoML 回帰)
- TPOT XGBoost Classification (TPOT XGBoost 分類)
- TPOT XGBoost Regression (TPOT XGBoost 回帰)
- AI Computer Vision
- Communications Mining
- UiPath Document Understanding
- パイプライン
- ML スキル
- ML ログ
- AI Center の Document UnderstandingTM
- AI Center API
- ライセンス
- AI ソリューション テンプレート
- 使い方
- 基本的なトラブルシューティング ガイド
継続学習するカスタム NER を使用する
重要 :
このコンテンツの一部は機械翻訳によって処理されており、完全な翻訳を保証するものではありません。
新しいコンテンツの翻訳は、およそ 1 ~ 2 週間で公開されます。
AI Center
最終更新日時 2024年11月19日
継続学習するカスタム NER を使用する
ここでは、研究論文で言及されている化学物質をカテゴリ別に抽出する方法を例に説明します。以下の手順に従って化学物質を抽出し、ABBREVIATION、FAMILY、FORMULA、IDENTIFIER、MULTIPLE、SYSTEMATIC、TRIVIAL および NO_CLASS に分類します。
この手順では、Custom Named Entity Recognition (カスタム固有表現抽出) パッケージを使用します。このパッケージの機能と用途については、「Custom Named Entity Recognition (カスタム固有表現抽出)」をご覧ください。
この手順は、以下のサンプル ファイルを使用して実行します。
- CoNLL 形式の事前にラベル付けされたトレーニング データセット。こちらからダウンロードできます。
- 事前にラベル付けされたテスト データセット。こちらからダウンロードできます。
- 研究論文で言及されている化学物質をカテゴリ別に抽出するためのサンプル ワークフロー。こちらからダウンロードできます。
注: サンプル ファイルに以下の変数が入力されていることを確認してください。
in_emailAdress
- Action Center タスクが割り当てられるメール アドレスin_MLSkillEndpoint
- ML スキルのパブリック エンドポイントin_MLSkillAPIKey
- ML スキルの API キーin_labelStudioEndpoint
- (任意) 継続的なラベル付けを可能にします。Label Studio プロジェクトのインポート URL を指定します。
研究論文で言及されている化学物質をカテゴリ別に抽出するには、以下の手順に従います。
Label Studio の使用を開始して、AI Center にデータをエクスポートするには、以下の手順に従います。
- ローカル マシンまたはクラウド インスタンスに Label Studio をインストールします。こちらの手順に従ってください。
- Named Entity Recognition (固有表現抽出) テンプレートから新しいプロジェクトを作成して、ラベル名を指定します。
- ラベル名に特殊文字やスペースが含まれていないことを確認します。たとえば、
Set Date
ではなくSetDate
を使用します。 <Text>
タグの値が"$text"
であることを確認します。- こちらの API を使用してデータをアップロードします。
cURL 要求の例:
curl --location --request POST 'https://<label-studio-instance>/api/projects/<id>/import' \)\) --header 'Content-Type: application/json' \)\) --header 'Authorization: Token <Token>' \)\) --data-raw '[ { "data": { "text": "<Text1>" }, }, { "data": { "text": "<Text2>" } } ]'
curl --location --request POST 'https://<label-studio-instance>/api/projects/<id>/import' \)\) --header 'Content-Type: application/json' \)\) --header 'Authorization: Token <Token>' \)\) --data-raw '[ { "data": { "text": "<Text1>" }, }, { "data": { "text": "<Text2>" } } ]' - データに注釈を付けます。
- データを CoNLL 2003 形式でエクスポートし、AI Center にアップロードします。
- 不正確で信頼度の低い予測をキャプチャするために、提供されているサンプル ワークフローで Label Studio インスタンスの URL と API キーを入力します。