ai-center
latest
false
- リリース ノート
- 基本情報
- 通知
- プロジェクト
- データセット
- データのラベル付け
- データのラベル付けについて
- データ ラベルを管理する
- 人間参加型のデータのラベル付け機能を使用する
- ML パッケージ
- すぐに使えるパッケージ
- 概要
- English Text Classification (英語テキスト分類)
- French Text Classification (フランス語テキスト分類)
- Japanese Text Classification (日本語テキスト分類)
- Object Detection (オブジェクト検出)
- Text Classification (テキスト分類)
- TPOT AutoML Classification (TPOT AutoML分類)
- TPOT AutoML Regression (TPOT AutoML 回帰)
- TPOT XGBoost Classification (TPOT XGBoost 分類)
- TPOT XGBoost Regression (TPOT XGBoost 回帰)
- AI Computer Vision
- Communications Mining
- UiPath Document Understanding
- パイプライン
- ML スキル
- ML ログ
- AI Center の Document UnderstandingTM
- AI Center API
- ライセンス
- AI ソリューション テンプレート
- 使い方
- 基本的なトラブルシューティング ガイド
データのラベル付けについて
重要 :
このコンテンツの一部は機械翻訳によって処理されており、完全な翻訳を保証するものではありません。
新しいコンテンツの翻訳は、およそ 1 ~ 2 週間で公開されます。
AI Center
最終更新日時 2024年11月19日
データのラベル付けについて
[データのラベル付け] ページには、プロジェクト内のすべてのデータのラベル付けセッションが表示されます。このページには、プロジェクトの選択後に [データのラベル付け] メニューからアクセスできます。
データのラベル付け機能を使用すると、生データをアップロードしたり、ラベル付けツールでテキスト データに注釈を付けたり (分類またはエンティティ認識の場合)、ラベル付けされたデータを使用して ML モデルをトレーニングしたりできます。また、フィードバック プロセスの一環として、人間のレビュー担当者が誤った予測に再ラベル付けする際にも使用されます。この機能により、サード パーティのツールや連携なしに、AI Center 内で完全なテキスト モデルの構築ワークフローを利用できます。