- Vue d'ensemble (Overview)
- Démarrage
- Activités (Activities)
- Tableaux de bord Insights.
- Processus Document Understanding
- Didacticiels de démarrage rapide
- Composants de l'infrastructure
- Vue d'ensemble (Overview)
- Activités Document Understanding
- Vue d’ensemble de classification de document
- Assistant de configuration des classifieurs de l'activité Classer l'étendue du document (Classify Document Scope)
- Intelligent Keyword Classifier
- Keyword Based Classifier
- Machine Learning Classifier
- Classifieur génératif
- Activités liées à la classification des documents
- Assistant de configuration des classifieurs (Configure Classifiers Wizard) de l'activité Tester l'étendue des classifieurs (Train Classifier Scope)
- Vue d’ensemble de l'entraînement de la classification des documents
- Activités liées à l'entraînement de la classification des documents
- Machine Learning Classifier Trainer
- Assistant de configuration des extracteurs (Configure Extractors Wizard) de l'activité Étendue de l'extraction de données (Data Extraction Scope)
- Vue d’ensemble de l’extraction des données
- Activités liées à l'extraction de données
- Form Extractor
- Extracteur de formulaires intelligents
- Extracteur d'apprentissage automatique
- Regex Based Extractor
- Consommation de données
- Appels API
- Paquets ML
- Vue d'ensemble (Overview)
- Paquets ML - Document Understanding
- Classifieur de documents - Paquet ML
- Paquets ML avec capacités OCR
- 1040 - Paquet ML
- Annexe C du formulaire 1040 Planification C - Paquet ML
- 1040 Planification D - Paquet ML
- Annexe E du formulaire 1040 - Paquet ML
- Paquet ML - 1040x
- Paquet ML 3949a
- 4506T - Paquet ML
- Paquet ML 709
- Paquet ML 941x
- Paquet ML 9465
- ACORD131 - Paquet ML
- ACORD140 - Paquet ML
- ACORD25 - Paquet ML
- États financiers - Paquet ML
- Connaissement - Paquet ML
- Paquet ML - Certificat de constitution
- Paquet ML - Certificat d'origine
- Chèques - Paquet ML
- Paquet ML - Certificat de produit pour enfants
- CMS1500 - Paquet ML
- Paquet ML - Déclaration de conformité de l’UE
- États financiers - Paquet ML
- FM1003 - Paquet ML
- I9 - Paquet ML
- Cartes d’identité - Paquet ML
- Factures - Paquet ML
- FacturesAustralie - Paquet ML
- FacturesChine - Paquet ML
- Paquet ML - Factures hébreu
- FacturesInde - Paquet ML
- FacturesJapon - Paquet ML
- Paquet ML - Livraison des factures
- Listes de colisage - Paquet ML
- Fiches de paie - Paquet ML
- Passeports - Paquet ML
- Bons de commande - Paquet ML
- Reçus - Paquet ML
- RemittanceAdvices - Paquet ML
- Formulaire UB04 - Paquet ML
- Factures de services publics - Paquet ML
- Titres de véhicule - Paquet ML
- W2 - Paquet ML
- W9 - Paquet ML
- Autres paquets ML prêts à l’emploi
- Points de terminaison publics
- Limitations du trafic
- Configuration OCR
- Pipelines
- Services OCR
- Langues prises en charge
- Apprentissage profond
- Licences
Guide de l'utilisateur de Document Understanding
Cases à cocher et signatures
Il existe plusieurs types de champs à choix multiples qui utilisent des cases à cocher :
- les cases à cocher mutuellement exclusives
- les cases à cocher non mutuellement exclusives, où vous pouvez sélectionner plusieurs options.
Un autre aspect important est le nombre de choix disponibles pour un champ à choix multiples donné. Dans certains cas, il peut y avoir une seule option, où la case est cochée ou non, tandis que dans d’autres cas, il peut y avoir 10 options, 20 options ou plus, disposées dans une grille ou un tableau, comme sur de nombreux formulaires de santé.
Il existe deux manières principales de labelliser ces types de champs à choix multiples.
Prenons un exemple pour comprendre comment labelliser les options. Les formulaires peuvent inclure les options Projet (Project) ou Politique (Policy). Dans ce cas, vous n’avez qu’un seul champ et vous ne labellisez que le mot sélectionné, c’est-à-dire le mot Projet (Project) si la case à côté est cochée ou le mot Politique (Policy) si la case à côté est cochée. Si aucune n’est cochée, vous ne labellisez ni l’un ni l’autre, les deux ne seront pas cochés, et ces documents seront simplement supprimés de l’ensemble d’apprentissage.
Cette approche présente l’avantage de n’avoir qu’un seul champ, ce qui nécessite moins de données. Il présente également l’avantage de ne pas reposer sur une détection réussie des cases à cocher. Si une case à cocher est détectée comme une lettre X, le modèle peut toujours apprendre à reconnaître que cela signifie que l’option à côté est sélectionnée.
L’inconvénient est que vous devez vous assurer que les deux options sont représentées à peu près également, ce qui n’est pas toujours le cas. Potentiellement, dans votre ensemble d’entraînement, 90 % des documents peuvent avoir la case Projet (Project) cochée. Dans ce cas, le modèle ne peut pas fonctionner correctement et cette approche échoue. Le problème s’aggrave lorsque vous avez plus d’options, car certaines d’entre elles sont presque toujours rares. Dans ces cas, vous devrez peut-être créer de faux documents avec les rares options cochées pour équilibrer les choses.
À partir de la version 2022.4 de LTS Enterprise, les signatures peuvent être détectées à l'aide de l'OCR de document UiPath. Par conséquent, les modèles d'apprentissage automatique peuvent détecter directement les signatures.
Labelliser une signature comme tout autre champ dans votre document. Une fois détecté par l’OCR de document UiPath, le modèle d’apprentissage automatique apprend à reconnaître le champ comme une signature.