- Documents d’API
- CLI
- Guides d'intégration
- Intégration avec l'utilisateur du service Azure
- Intégration avec l'authentification d'application Azure
- Automatisation en temps réel
- Récupérer des données pour Tableau avec Python
- Intégration d'Elasticsearch
- Intégration EWS auto-hébergée
- Infrastructure d'automatisation UiPath
- Activités UiPath Marketplace
- Activités officielles UiPath
- Blog
- Comment les machines apprennent à comprendre les mots : guide d'intégration dans NLP
- Apprentissage basé sur des invites avec des Transformers
- Efficient Transformers II : Dilarisation des connaissances et affinement
- Transformateurs efficaces I : mécanismes d'attention
- Modélisation de l'intention hiérarchique profonde non supervisée : obtenir de la valeur sans données d'entraînement
- Correction du biais d'annotation avec Communications Mining
- Apprentissage actif : de meilleurs modèles d'ML en moins de temps
- Tout est dans les chiffres : évaluer les performances du modèle avec des métriques
- Pourquoi la validation du modèle est importante
- Comparaison de Communications Mining et de Google AutoML pour l'intelligence des données conversationnelles
Prévisions
/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict
Autorisations requises : Afficher les libellés, Afficher les sources
Opération facturable
1 unité d'IA vous sera facturée pour chaque commentaire fourni dans le corps de la demande.
- Bash
curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "documents": [ { "messages": [ { "body": { "text": "Hi Bob,\n\nCould you send me the figures for today?" }, "from": "alice@company.com", "sent_at": "2020-01-09T16:34:45Z", "signature": { "text": "Thanks,\nAlice" }, "subject": { "text": "Figures Request" }, "to": [ "bob@organisation.org" ] } ], "timestamp": "2013-09-12T20:01:20.000000+00:00", "user_properties": { "string:City": "London" } }, { "messages": [ { "body": { "text": "Alice,\n\nHere are the figures for today." }, "from": "bob@organisation.org", "sent_at": "2020-01-09T16:44:45Z", "signature": { "text": "Regards,\nBob" }, "subject": { "text": "Re: Figures Request" }, "to": [ "alice@company.com" ] } ], "timestamp": "2011-12-12T10:04:30.000000+00:00", "user_properties": { "string:City": "Bucharest" } } ], "threshold": 0.25 }'
curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "documents": [ { "messages": [ { "body": { "text": "Hi Bob,\n\nCould you send me the figures for today?" }, "from": "alice@company.com", "sent_at": "2020-01-09T16:34:45Z", "signature": { "text": "Thanks,\nAlice" }, "subject": { "text": "Figures Request" }, "to": [ "bob@organisation.org" ] } ], "timestamp": "2013-09-12T20:01:20.000000+00:00", "user_properties": { "string:City": "London" } }, { "messages": [ { "body": { "text": "Alice,\n\nHere are the figures for today." }, "from": "bob@organisation.org", "sent_at": "2020-01-09T16:44:45Z", "signature": { "text": "Regards,\nBob" }, "subject": { "text": "Re: Figures Request" }, "to": [ "alice@company.com" ] } ], "timestamp": "2011-12-12T10:04:30.000000+00:00", "user_properties": { "string:City": "Bucharest" } } ], "threshold": 0.25 }' - Nœud
const request = require("request"); request.post( { url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { documents: [ { messages: [ { body: { text: "Hi Bob,\n\nCould you send me the figures for today?", }, from: "alice@company.com", sent_at: "2020-01-09T16:34:45Z", signature: { text: "Thanks,\nAlice" }, subject: { text: "Figures Request" }, to: ["bob@organisation.org"], }, ], timestamp: "2013-09-12T20:01:20.000000+00:00", user_properties: { "string:City": "London" }, }, { messages: [ { body: { text: "Alice,\n\nHere are the figures for today." }, from: "bob@organisation.org", sent_at: "2020-01-09T16:44:45Z", signature: { text: "Regards,\nBob" }, subject: { text: "Re: Figures Request" }, to: ["alice@company.com"], }, ], timestamp: "2011-12-12T10:04:30.000000+00:00", user_properties: { "string:City": "Bucharest" }, }, ], threshold: 0.25, }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } );
const request = require("request"); request.post( { url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { documents: [ { messages: [ { body: { text: "Hi Bob,\n\nCould you send me the figures for today?", }, from: "alice@company.com", sent_at: "2020-01-09T16:34:45Z", signature: { text: "Thanks,\nAlice" }, subject: { text: "Figures Request" }, to: ["bob@organisation.org"], }, ], timestamp: "2013-09-12T20:01:20.000000+00:00", user_properties: { "string:City": "London" }, }, { messages: [ { body: { text: "Alice,\n\nHere are the figures for today." }, from: "bob@organisation.org", sent_at: "2020-01-09T16:44:45Z", signature: { text: "Regards,\nBob" }, subject: { text: "Re: Figures Request" }, to: ["alice@company.com"], }, ], timestamp: "2011-12-12T10:04:30.000000+00:00", user_properties: { "string:City": "Bucharest" }, }, ], threshold: 0.25, }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } ); - Python
import json import os import requests response = requests.post( "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "documents": [ { "messages": [ { "from": "alice@company.com", "to": ["bob@organisation.org"], "sent_at": "2020-01-09T16:34:45Z", "body": { "text": "Hi Bob,\n\nCould you send me the figures for today?" }, "subject": {"text": "Figures Request"}, "signature": {"text": "Thanks,\nAlice"}, } ], "timestamp": "2013-09-12T20:01:20.000000+00:00", "user_properties": {"string:City": "London"}, }, { "messages": [ { "from": "bob@organisation.org", "to": ["alice@company.com"], "sent_at": "2020-01-09T16:44:45Z", "body": { "text": "Alice,\n\nHere are the figures for today." }, "subject": {"text": "Re: Figures Request"}, "signature": {"text": "Regards,\nBob"}, } ], "timestamp": "2011-12-12T10:04:30.000000+00:00", "user_properties": {"string:City": "Bucharest"}, }, ], "threshold": 0.25, }, ) print(json.dumps(response.json(), indent=2, sort_keys=True))
import json import os import requests response = requests.post( "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "documents": [ { "messages": [ { "from": "alice@company.com", "to": ["bob@organisation.org"], "sent_at": "2020-01-09T16:34:45Z", "body": { "text": "Hi Bob,\n\nCould you send me the figures for today?" }, "subject": {"text": "Figures Request"}, "signature": {"text": "Thanks,\nAlice"}, } ], "timestamp": "2013-09-12T20:01:20.000000+00:00", "user_properties": {"string:City": "London"}, }, { "messages": [ { "from": "bob@organisation.org", "to": ["alice@company.com"], "sent_at": "2020-01-09T16:44:45Z", "body": { "text": "Alice,\n\nHere are the figures for today." }, "subject": {"text": "Re: Figures Request"}, "signature": {"text": "Regards,\nBob"}, } ], "timestamp": "2011-12-12T10:04:30.000000+00:00", "user_properties": {"string:City": "Bucharest"}, }, ], "threshold": 0.25, }, ) print(json.dumps(response.json(), indent=2, sort_keys=True)) - Réponse
{ "entities": [ [ { "capture_ids": [], "formatted_value": "Bob", "id": "76aebf2646577a1d", "kind": "person", "name": "person", "probability": null, "span": { "char_end": 6, "char_start": 3, "content_part": "body", "message_index": 0, "utf16_byte_end": 12, "utf16_byte_start": 6 } }, { "capture_ids": [], "formatted_value": "2020-01-09 00:00 UTC", "id": "20beddf4c5f5bb61", "kind": "date", "name": "date", "probability": null, "span": { "char_end": 48, "char_start": 43, "content_part": "body", "message_index": 0, "utf16_byte_end": 96, "utf16_byte_start": 86 } } ], [] ], "model": { "time": "2020-02-06T20:42:58.047000Z", "version": 5 }, "predictions": [ [ { "name": ["Some Label"], "probability": 0.8896465003490448 }, { "name": ["Parent Label", "Child Label"], "probability": 0.26687008142471313, "sentiment": 0.8762539502232571 } ], [ { "name": ["Other Label"], "probability": 0.6406207121908665 } ] ], "status": "ok" }
{ "entities": [ [ { "capture_ids": [], "formatted_value": "Bob", "id": "76aebf2646577a1d", "kind": "person", "name": "person", "probability": null, "span": { "char_end": 6, "char_start": 3, "content_part": "body", "message_index": 0, "utf16_byte_end": 12, "utf16_byte_start": 6 } }, { "capture_ids": [], "formatted_value": "2020-01-09 00:00 UTC", "id": "20beddf4c5f5bb61", "kind": "date", "name": "date", "probability": null, "span": { "char_end": 48, "char_start": 43, "content_part": "body", "message_index": 0, "utf16_byte_end": 96, "utf16_byte_start": 86 } } ], [] ], "model": { "time": "2020-02-06T20:42:58.047000Z", "version": 5 }, "predictions": [ [ { "name": ["Some Label"], "probability": 0.8896465003490448 }, { "name": ["Parent Label", "Child Label"], "probability": 0.26687008142471313, "sentiment": 0.8762539502232571 } ], [ { "name": ["Other Label"], "probability": 0.6406207121908665 } ] ], "status": "ok" }
live
ou staging
pour interroger la version actuelle du modèle Live ou Staging.
Nom | Saisie de texte | Requis | DESCRIPTION |
---|---|---|---|
documents | array<Comment> | oui | A batch of maximum 4096 documents, in the format described in Comment Reference. Larger batches are faster (per document) than smaller ones. |
threshold | Numérique | non | Le seuil de confiance par lequel filtrer les résultats du libellé. Un nombre entre 1.0 et 0.0 . 0.0 inclura tous les résultats. Régler sur "auto" pour utiliser les seuils automatiques. S'il n'est pas défini, le seuil par défaut de 0.25 sera utilisé.
|
labels | array<Label> | non | Liste de libellés demandés à renvoyer avec des seuils éventuellement spécifiques au libellé. |
Label
a le format suivant :
Nom | Saisie de texte | Requis | DESCRIPTION |
---|---|---|---|
name | array<string> | oui | Nom du libellé à renvoyer, formaté sous la forme d'une liste de libellés hiérarchisés. Par exemple, le libellé "Parent Label > Child Label" aura le format ["Parent Label", "Child Label"] .
|
threshold | Numérique | non | Le seuil de confiance à utiliser pour le libellé. S'il n'est pas spécifié, utilise par défaut le seuil spécifié au niveau supérieur. |
Nom | Saisie de texte | DESCRIPTION |
---|---|---|
status | string | ok if the request is successful, or error in case of an error. See Overview to learn more about error responses.
|
predictions | array<array<Label>> | Une liste de array<Label> dans le même ordre que les commentaires de la requête, où chaque Label a le format décrit ici.
|
entities | array<array<Entity>> | Une liste de array<Entity> dans le même ordre que les commentaires de la requête, où chaque Entity a le format décrit ici.
|
label_properties | array<LabelProperty> | Tableau contenant les propriétés de libellé prévues pour ce commentaire, où chaque LabelProperty a le format décrit ici.
|
model | Modèle | Informations sur le modèle utilisé pour faire les prévisions, au format décrit ici. |
latest
instead of a pinned model version.
/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails
Autorisations requises : Afficher les libellés, Afficher les sources
Opération facturable
1 AI Unit vous sera facturé par e-mail brut fourni dans le corps de la demande.
- Bash
curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "documents": [ { "raw_email": { "body": { "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice" }, "headers": { "parsed": { "Date": "Thu, 09 Jan 2020 16:34:45 +0000", "From": "alice@company.com", "Message-ID": "abcdef@company.com", "References": "<01234@company.com> <56789@company.com>", "Subject": "Figures Request", "To": "bob@organisation.org" } } }, "user_properties": { "string:City": "London" } }, { "raw_email": { "body": { "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>" }, "headers": { "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com" } }, "user_properties": { "string:City": "Bucharest" } } ], "include_comments": false, "threshold": 0.25, "transform_tag": "generic.0.CONVKER5" }'
curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "documents": [ { "raw_email": { "body": { "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice" }, "headers": { "parsed": { "Date": "Thu, 09 Jan 2020 16:34:45 +0000", "From": "alice@company.com", "Message-ID": "abcdef@company.com", "References": "<01234@company.com> <56789@company.com>", "Subject": "Figures Request", "To": "bob@organisation.org" } } }, "user_properties": { "string:City": "London" } }, { "raw_email": { "body": { "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>" }, "headers": { "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com" } }, "user_properties": { "string:City": "Bucharest" } } ], "include_comments": false, "threshold": 0.25, "transform_tag": "generic.0.CONVKER5" }' - Nœud
const request = require("request"); request.post( { url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { documents: [ { raw_email: { body: { plain: "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice", }, headers: { parsed: { Date: "Thu, 09 Jan 2020 16:34:45 +0000", From: "alice@company.com", "Message-ID": "abcdef@company.com", References: "<01234@company.com> <56789@company.com>", Subject: "Figures Request", To: "bob@organisation.org", }, }, }, user_properties: { "string:City": "London" }, }, { raw_email: { body: { html: "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>", }, headers: { raw: "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com", }, }, user_properties: { "string:City": "Bucharest" }, }, ], include_comments: false, threshold: 0.25, transform_tag: "generic.0.CONVKER5", }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } );
const request = require("request"); request.post( { url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { documents: [ { raw_email: { body: { plain: "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice", }, headers: { parsed: { Date: "Thu, 09 Jan 2020 16:34:45 +0000", From: "alice@company.com", "Message-ID": "abcdef@company.com", References: "<01234@company.com> <56789@company.com>", Subject: "Figures Request", To: "bob@organisation.org", }, }, }, user_properties: { "string:City": "London" }, }, { raw_email: { body: { html: "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>", }, headers: { raw: "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com", }, }, user_properties: { "string:City": "Bucharest" }, }, ], include_comments: false, threshold: 0.25, transform_tag: "generic.0.CONVKER5", }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } ); - Python
import json import os import requests response = requests.post( "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "transform_tag": "generic.0.CONVKER5", "documents": [ { "raw_email": { "headers": { "parsed": { "Message-ID": "abcdef@company.com", "Date": "Thu, 09 Jan 2020 16:34:45 +0000", "Subject": "Figures Request", "From": "alice@company.com", "To": "bob@organisation.org", "References": "<01234@company.com> <56789@company.com>", } }, "body": { "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice" }, }, "user_properties": {"string:City": "London"}, }, { "raw_email": { "headers": { "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com" }, "body": { "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>" }, }, "user_properties": {"string:City": "Bucharest"}, }, ], "threshold": 0.25, "include_comments": False, }, ) print(json.dumps(response.json(), indent=2, sort_keys=True))
import json import os import requests response = requests.post( "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "transform_tag": "generic.0.CONVKER5", "documents": [ { "raw_email": { "headers": { "parsed": { "Message-ID": "abcdef@company.com", "Date": "Thu, 09 Jan 2020 16:34:45 +0000", "Subject": "Figures Request", "From": "alice@company.com", "To": "bob@organisation.org", "References": "<01234@company.com> <56789@company.com>", } }, "body": { "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice" }, }, "user_properties": {"string:City": "London"}, }, { "raw_email": { "headers": { "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com" }, "body": { "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>" }, }, "user_properties": {"string:City": "Bucharest"}, }, ], "threshold": 0.25, "include_comments": False, }, ) print(json.dumps(response.json(), indent=2, sort_keys=True)) - Réponse
{ "entities": [ [ { "capture_ids": [], "formatted_value": "Bob", "id": "76aebf2646577a1d", "kind": "person", "name": "person", "probability": null, "span": { "char_end": 6, "char_start": 3, "content_part": "body", "message_index": 0, "utf16_byte_end": 12, "utf16_byte_start": 6 } }, { "capture_ids": [], "formatted_value": "2020-01-09 00:00 UTC", "id": "20beddf4c5f5bb61", "kind": "date", "name": "date", "probability": null, "span": { "char_end": 48, "char_start": 43, "content_part": "body", "message_index": 0, "utf16_byte_end": 96, "utf16_byte_start": 86 } } ], [] ], "model": { "time": "2020-02-06T20:42:58.047000Z", "version": 5 }, "predictions": [ [ { "name": ["Some Label"], "probability": 0.8896465003490448 }, { "name": ["Parent Label", "Child Label"], "probability": 0.26687008142471313, "sentiment": 0.8762539502232571 } ], [ { "name": ["Other Label"], "probability": 0.6406207121908665 } ] ], "status": "ok" }
{ "entities": [ [ { "capture_ids": [], "formatted_value": "Bob", "id": "76aebf2646577a1d", "kind": "person", "name": "person", "probability": null, "span": { "char_end": 6, "char_start": 3, "content_part": "body", "message_index": 0, "utf16_byte_end": 12, "utf16_byte_start": 6 } }, { "capture_ids": [], "formatted_value": "2020-01-09 00:00 UTC", "id": "20beddf4c5f5bb61", "kind": "date", "name": "date", "probability": null, "span": { "char_end": 48, "char_start": 43, "content_part": "body", "message_index": 0, "utf16_byte_end": 96, "utf16_byte_start": 86 } } ], [] ], "model": { "time": "2020-02-06T20:42:58.047000Z", "version": 5 }, "predictions": [ [ { "name": ["Some Label"], "probability": 0.8896465003490448 }, { "name": ["Parent Label", "Child Label"], "probability": 0.26687008142471313, "sentiment": 0.8762539502232571 } ], [ { "name": ["Other Label"], "probability": 0.6406207121908665 } ] ], "status": "ok" }
live
ou staging
pour interroger la version actuelle du modèle Live ou Staging.
Nom | Saisie de texte | Requis | DESCRIPTION |
---|---|---|---|
transform_tag | string | oui | Une balise spécifiant comment les données brutes doivent être traitées. |
documents | array<Document> | oui | Un lot de 4096 documents au maximum, au format décrit ci-dessous. Les lots plus volumineux sont plus rapides (par document) que les plus petits. |
threshold | Numérique | non | Le seuil de confiance par lequel filtrer les résultats du libellé. Un nombre entre 1.0 et 0.0 . 0.0 inclura tous les résultats. Régler sur "auto" pour utiliser les seuils automatiques. S'il n'est pas défini, le seuil par défaut de 0.25 sera utilisé.
|
labels | array<Label> | non | Liste de libellés demandés à renvoyer avec des seuils éventuellement spécifiques au libellé. |
include_comments | boolean | non | Si ce paramètre est défini sur true , les commentaires analysés à partir des e-mails seront renvoyés dans le corps de la réponse.
|
Document
a le format suivant :
Nom | Saisie de texte | Requis | DESCRIPTION |
---|---|---|---|
raw_email | RawEmail | oui | Données de l'e-mail, au format décrit ici. |
user_properties | map<string, string | number> | non | Toutes les métadonnées définies par l'utilisateur qui s'appliquent au commentaire. Le format est décrit ici.
Remarque : Certaines propriétés utilisateur sont générées en fonction du contenu de l'e-mail. Si celles-ci sont en conflit avec les propriétés utilisateur téléchargées, la requête échouera avec
422 Unprocessable Entity .
|
Label
a le format suivant :
Nom | Saisie de texte | Requis | DESCRIPTION |
---|---|---|---|
name | array<string> | oui | Nom du libellé à renvoyer, formaté sous la forme d'une liste de libellés hiérarchisés. Par exemple, le libellé "Parent Label > Child Label" aura le format ["Parent Label", "Child Label"] .
|
threshold | Numérique | non | Le seuil de confiance à utiliser pour le libellé. S'il n'est pas spécifié, utilise par défaut le seuil spécifié au niveau supérieur. |
Nom | Saisie de texte | DESCRIPTION |
---|---|---|
status | string | ok if the request is successful, or error in case of an error. SeeOverview to learn more about error responses.
|
comments | array<Comment> | Une liste de commentaires analysés à partir des e-mails bruts téléchargés, au format décrit dans la Référence du commentaire. Uniquement renvoyé si vous avez défini include_comments dans la requête.
|
predictions | array<array<Label>> | Une liste de array<Label> dans le même ordre que les commentaires de la requête, où chaque Label a le format décrit ici.
|
entities | array<array<Entity>> | Une liste de array<Entity> dans le même ordre que les commentaires de la requête, où chaque Entity a le format décrit ici.
|
label_properties | array<LabelProperty> | Tableau contenant les propriétés de libellé prévues pour ce commentaire, où chaque LabelProperty a le format décrit ici.
|
model | Modèle | Informations sur le modèle utilisé pour faire les prévisions, au format décrit ici. |
Pour les requêtes volumineuses, ce point de terminaison peut prendre plus de temps à répondre. Vous devez augmenter le délai d'attente de votre client.
/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments
Autorisations requises : Afficher les libellés, Afficher les sources
- Bash
curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "threshold": 0.25, "uids": [ "18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002" ] }'
curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "threshold": 0.25, "uids": [ "18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002" ] }' - Nœud
const request = require("request"); request.post( { url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { threshold: 0.25, uids: ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"], }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } );
const request = require("request"); request.post( { url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { threshold: 0.25, uids: ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"], }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } ); - Python
import json import os import requests response = requests.post( "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "uids": ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"], "threshold": 0.25, }, ) print(json.dumps(response.json(), indent=2, sort_keys=True))
import json import os import requests response = requests.post( "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "uids": ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"], "threshold": 0.25, }, ) print(json.dumps(response.json(), indent=2, sort_keys=True)) - Réponse
{ "model": { "time": "2020-02-06T20:42:58.047000Z", "version": 5 }, "predictions": [ { "entities": [ { "capture_ids": [], "formatted_value": "Bob", "id": "76aebf2646577a1d", "kind": "person", "name": "person", "probability": null, "span": { "char_end": 6, "char_start": 3, "content_part": "body", "message_index": 0, "utf16_byte_end": 12, "utf16_byte_start": 6 } }, { "capture_ids": [], "formatted_value": "2020-01-09 00:00 UTC", "id": "20beddf4c5f5bb61", "kind": "date", "name": "date", "probability": null, "span": { "char_end": 48, "char_start": 43, "content_part": "body", "message_index": 0, "utf16_byte_end": 96, "utf16_byte_start": 86 } } ], "labels": [ { "name": ["Some Label"], "probability": 0.8896465003490448 }, { "name": ["Parent Label", "Child Label"], "probability": 0.26687008142471313, "sentiment": 0.8762539502232571 } ], "uid": "18ba5ce699f8da1f.0001" }, { "entities": [], "labels": [ { "name": ["Other Label"], "probability": 0.6406207121908665 } ], "uid": "18ba5ce699f8da1f.0002" } ], "status": "ok" }
{ "model": { "time": "2020-02-06T20:42:58.047000Z", "version": 5 }, "predictions": [ { "entities": [ { "capture_ids": [], "formatted_value": "Bob", "id": "76aebf2646577a1d", "kind": "person", "name": "person", "probability": null, "span": { "char_end": 6, "char_start": 3, "content_part": "body", "message_index": 0, "utf16_byte_end": 12, "utf16_byte_start": 6 } }, { "capture_ids": [], "formatted_value": "2020-01-09 00:00 UTC", "id": "20beddf4c5f5bb61", "kind": "date", "name": "date", "probability": null, "span": { "char_end": 48, "char_start": 43, "content_part": "body", "message_index": 0, "utf16_byte_end": 96, "utf16_byte_start": 86 } } ], "labels": [ { "name": ["Some Label"], "probability": 0.8896465003490448 }, { "name": ["Parent Label", "Child Label"], "probability": 0.26687008142471313, "sentiment": 0.8762539502232571 } ], "uid": "18ba5ce699f8da1f.0001" }, { "entities": [], "labels": [ { "name": ["Other Label"], "probability": 0.6406207121908665 } ], "uid": "18ba5ce699f8da1f.0002" } ], "status": "ok" }
live
ou staging
pour interroger la version actuelle du modèle Live ou Staging.
Nom | Saisie de texte | Requis | DESCRIPTION |
---|---|---|---|
uids | array<string> | oui | Liste d'au maximum 4096 avec source_id -s et comment_id -s combinés au format source_id.comment_id . Les sources n'ont pas besoin d'appartenir à l'ensemble de données actuel. Vous pouvez donc demander des prédictions de commentaires pour une source dans un ensemble de données différent (ou non). Les listes plus volumineuses sont plus rapides (par commentaire) que les plus petites.
|
threshold | Numérique | non | Le seuil de confiance par lequel filtrer les résultats du libellé. Un nombre entre 1.0 et 0.0 . 0.0 inclura tous les résultats. Régler sur "auto" pour utiliser les seuils automatiques. S'il n'est pas défini, le seuil par défaut de 0.25 sera utilisé.
|
labels | array<Label> | non | Liste de libellés demandés à renvoyer avec des seuils éventuellement spécifiques au libellé. |
Label
a le format suivant :
Nom | Saisie de texte | Requis | DESCRIPTION |
---|---|---|---|
name | array<string> | oui | Nom du libellé à renvoyer, formaté sous la forme d'une liste de libellés hiérarchisés. Par exemple, le libellé "Parent Label > Child Label" aura le format ["Parent Label", "Child Label"] .
|
threshold | Numérique | non | Le seuil de confiance à utiliser pour le libellé. S'il n'est pas spécifié, utilise par défaut le seuil spécifié au niveau supérieur. |
Nom | Saisie de texte | DESCRIPTION |
---|---|---|
status | string | ok si la requête est réussie, ou error en cas d'erreur. Consultez la Vue d'ensemble pour en savoir plus sur les réponses d'erreur.
|
predictions | array<Prediction> | Une liste de prédictions au format décrit ci-dessous. |
model | Modèle | Informations sur le modèle utilisé pour faire les prévisions, au format décrit ici. |
Prediction
a le format suivant :
Nom | Saisie de texte | DESCRIPTION |
---|---|---|
uid | string | Une valeur source_id et comment_id combinée au format source_id.comment_id .
|
labels | array<Label> | Tableau contenant les libellés prévus pour ce commentaire, où Label a le format décrit ici.
|
entities | array<Entity> | Tableau contenant les entités prévues pour ce commentaire, où Entity a le format décrit ici.
|
label_properties | array<LabelProperty> | Tableau contenant les propriétés de libellé prévues pour ce commentaire, où chaque LabelProperty a le format décrit ici.
|
/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/validation
Autorisations requises : Afficher les libellés, Afficher les sources
- Bash
curl -X GET 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation' \ -H "Authorization: Bearer $REINFER_TOKEN"
curl -X GET 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation' \ -H "Authorization: Bearer $REINFER_TOKEN" - Nœud
const request = require("request"); request.get( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } );
const request = require("request"); request.get( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } ); - Python
import json import os import requests response = requests.get( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, ) print(json.dumps(response.json(), indent=2, sort_keys=True))
import json import os import requests response = requests.get( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, ) print(json.dumps(response.json(), indent=2, sort_keys=True)) - Réponse
{ "status": "ok", "validation": { "coverage": 0.9119927883148193, "dataset_quality": "good", "labels": [ { "name": "Notification", "parts": ["Notification"] }, { "name": "Notification > Out of Office", "parts": ["Notification", "Out of Office"] }, { "name": "Notification > Public Holiday", "parts": ["Notification", "Public Holiday"] } ], "mean_average_precision_safe": 0.83, "num_amber_labels": 1, "num_labels": 3, "num_red_labels": 1, "num_reviewed_comments": 10251, "version": 5 } }
{ "status": "ok", "validation": { "coverage": 0.9119927883148193, "dataset_quality": "good", "labels": [ { "name": "Notification", "parts": ["Notification"] }, { "name": "Notification > Out of Office", "parts": ["Notification", "Out of Office"] }, { "name": "Notification > Public Holiday", "parts": ["Notification", "Public Holiday"] } ], "mean_average_precision_safe": 0.83, "num_amber_labels": 1, "num_labels": 3, "num_red_labels": 1, "num_reviewed_comments": 10251, "version": 5 } }
version
. Vous pouvez utiliser les valeurs spéciales live
et staging
pour récupérer les statistiques des versions de modèle Live ou Staging actuelles, ou la valeur spéciale latest
pour la version de modèle la plus récemment disponible.
latest
, car il n'est pas garanti que les statistiques soient disponibles pour les versions de modèle non épinglées.
validation
contient les champs suivants :
Nom | Saisie de texte | DESCRIPTION |
---|---|---|
mean_average_precision_safe | float | Score moyen de précision (entre 0.0 et 1.0 ). Ce champ sera null si MAP n’est pas disponible.
|
num_labels | Numérique | Nombre de libellés dans la taxonomie (au moment où la version du modèle a été épinglée). |
labels | array<Label> | Liste des libellés dans la taxonomie (au moment où la version du modèle a été épinglée). Notez que, comme le montre l'exemple de réponse, les libellés parents sont renvoyés en tant que libellé distinct et sont renvoyés en tant que partie des libellés enfants. |
num_reviewed_comments | Numérique | Nombre de commentaires révisés dans le jeu de données (au moment où la version du modèle a été épinglée). |
version | Numérique | Version du modèle. |
num_amber_labels | Numérique | Nombre de libellés dans un état d'avertissement orange. |
num_red_labels | Numérique | Nombre de libellés dans un état d'avertissement rouge. |
dataset_score | Numérique | Score global de l'ensemble de données, compris entre 0 et 100 .
|
dataset_quality | string | L'un des "poor" , "average" , "good" , "excellent" , représentant le classement de qualité global de l'ensemble de données. Peut être null s'il n'y a pas assez de données.
|
balance | float | Une mesure de la similitude entre les commentaires examinés et non examinés (entre 0.0 et 1.0 ). Peut être null s'il n'y a pas assez de données.
|
balance_quality | string | L'un des "poor" , "average" , "good" , "excellent" , représentant le classement de qualité de l'équilibre. Peut être null s'il n'y a pas assez de données.
|
coverage | float | Une valeur fractionnée de la couverture du libellé dans l'ensemble de données (entre 0.0 et 1.0 ). Peut être null s'il n'y a pas assez de données.
|
coverage_quality | string | L'un des "poor" , "average" , "good" , "excellent" , représentant le classement de qualité de la couverture. Peut être null s'il n'y a pas assez de données.
|
all_labels_quality | string | L'un des "poor" , "average" , "good" , "excellent" , représentant le classement de qualité de tous les libellés. Peut être null s'il n'y a pas assez de données.
|
underperforming_labels_quality | string | L'un des "poor" , "average" , "good" , "excellent" , représentant le classement de qualité des libellés peu performants. Peut être null s'il n'y a pas assez de données.
|
Label
a le format suivant :
Nom | Saisie de texte | DESCRIPTION |
---|---|---|
name | string | Nom de l'étiquette, au format chaîne. |
parts | array<string> | Nom du libellé, formaté sous la forme d'une liste de libellés hiérarchisés. Par exemple, le libellé "Parent Label > Child Label" aura le format ["Parent Label", "Child Label"] |