communications-mining
latest
false
Important :
Ce contenu a été traduit à l'aide d'une traduction automatique.
UiPath logo, featuring letters U and I in white
Guide du développeur Communications Mining
Last updated 19 nov. 2024

Prévisions

Obtenir les prédictions pour un modèle épinglé

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict

Autorisations requises : Afficher les libellés, Afficher les sources

Important :

Opération facturable

1 unité d'IA vous sera facturée pour chaque commentaire fourni dans le corps de la demande.

  • Bash
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "messages": [
            {
              "body": {
                "text": "Hi Bob,\n\nCould you send me the figures for today?"
              },
              "from": "alice@company.com",
              "sent_at": "2020-01-09T16:34:45Z",
              "signature": {
                "text": "Thanks,\nAlice"
              },
              "subject": {
                "text": "Figures Request"
              },
              "to": [
                "bob@organisation.org"
              ]
            }
          ],
          "timestamp": "2013-09-12T20:01:20.000000+00:00",
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "messages": [
            {
              "body": {
                "text": "Alice,\n\nHere are the figures for today."
              },
              "from": "bob@organisation.org",
              "sent_at": "2020-01-09T16:44:45Z",
              "signature": {
                "text": "Regards,\nBob"
              },
              "subject": {
                "text": "Re: Figures Request"
              },
              "to": [
                "alice@company.com"
              ]
            }
          ],
          "timestamp": "2011-12-12T10:04:30.000000+00:00",
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "threshold": 0.25
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "messages": [
            {
              "body": {
                "text": "Hi Bob,\n\nCould you send me the figures for today?"
              },
              "from": "alice@company.com",
              "sent_at": "2020-01-09T16:34:45Z",
              "signature": {
                "text": "Thanks,\nAlice"
              },
              "subject": {
                "text": "Figures Request"
              },
              "to": [
                "bob@organisation.org"
              ]
            }
          ],
          "timestamp": "2013-09-12T20:01:20.000000+00:00",
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "messages": [
            {
              "body": {
                "text": "Alice,\n\nHere are the figures for today."
              },
              "from": "bob@organisation.org",
              "sent_at": "2020-01-09T16:44:45Z",
              "signature": {
                "text": "Regards,\nBob"
              },
              "subject": {
                "text": "Re: Figures Request"
              },
              "to": [
                "alice@company.com"
              ]
            }
          ],
          "timestamp": "2011-12-12T10:04:30.000000+00:00",
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "threshold": 0.25
    }'
    
  • Nœud
    const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              messages: [
                {
                  body: {
                    text: "Hi Bob,\n\nCould you send me the figures for today?",
                  },
                  from: "alice@company.com",
                  sent_at: "2020-01-09T16:34:45Z",
                  signature: { text: "Thanks,\nAlice" },
                  subject: { text: "Figures Request" },
                  to: ["bob@organisation.org"],
                },
              ],
              timestamp: "2013-09-12T20:01:20.000000+00:00",
              user_properties: { "string:City": "London" },
            },
            {
              messages: [
                {
                  body: { text: "Alice,\n\nHere are the figures for today." },
                  from: "bob@organisation.org",
                  sent_at: "2020-01-09T16:44:45Z",
                  signature: { text: "Regards,\nBob" },
                  subject: { text: "Re: Figures Request" },
                  to: ["alice@company.com"],
                },
              ],
              timestamp: "2011-12-12T10:04:30.000000+00:00",
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          threshold: 0.25,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              messages: [
                {
                  body: {
                    text: "Hi Bob,\n\nCould you send me the figures for today?",
                  },
                  from: "alice@company.com",
                  sent_at: "2020-01-09T16:34:45Z",
                  signature: { text: "Thanks,\nAlice" },
                  subject: { text: "Figures Request" },
                  to: ["bob@organisation.org"],
                },
              ],
              timestamp: "2013-09-12T20:01:20.000000+00:00",
              user_properties: { "string:City": "London" },
            },
            {
              messages: [
                {
                  body: { text: "Alice,\n\nHere are the figures for today." },
                  from: "bob@organisation.org",
                  sent_at: "2020-01-09T16:44:45Z",
                  signature: { text: "Regards,\nBob" },
                  subject: { text: "Re: Figures Request" },
                  to: ["alice@company.com"],
                },
              ],
              timestamp: "2011-12-12T10:04:30.000000+00:00",
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          threshold: 0.25,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "documents": [
                {
                    "messages": [
                        {
                            "from": "alice@company.com",
                            "to": ["bob@organisation.org"],
                            "sent_at": "2020-01-09T16:34:45Z",
                            "body": {
                                "text": "Hi Bob,\n\nCould you send me the figures for today?"
                            },
                            "subject": {"text": "Figures Request"},
                            "signature": {"text": "Thanks,\nAlice"},
                        }
                    ],
                    "timestamp": "2013-09-12T20:01:20.000000+00:00",
                    "user_properties": {"string:City": "London"},
                },
                {
                    "messages": [
                        {
                            "from": "bob@organisation.org",
                            "to": ["alice@company.com"],
                            "sent_at": "2020-01-09T16:44:45Z",
                            "body": {
                                "text": "Alice,\n\nHere are the figures for today."
                            },
                            "subject": {"text": "Re: Figures Request"},
                            "signature": {"text": "Regards,\nBob"},
                        }
                    ],
                    "timestamp": "2011-12-12T10:04:30.000000+00:00",
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "documents": [
                {
                    "messages": [
                        {
                            "from": "alice@company.com",
                            "to": ["bob@organisation.org"],
                            "sent_at": "2020-01-09T16:34:45Z",
                            "body": {
                                "text": "Hi Bob,\n\nCould you send me the figures for today?"
                            },
                            "subject": {"text": "Figures Request"},
                            "signature": {"text": "Thanks,\nAlice"},
                        }
                    ],
                    "timestamp": "2013-09-12T20:01:20.000000+00:00",
                    "user_properties": {"string:City": "London"},
                },
                {
                    "messages": [
                        {
                            "from": "bob@organisation.org",
                            "to": ["alice@company.com"],
                            "sent_at": "2020-01-09T16:44:45Z",
                            "body": {
                                "text": "Alice,\n\nHere are the figures for today."
                            },
                            "subject": {"text": "Re: Figures Request"},
                            "signature": {"text": "Regards,\nBob"},
                        }
                    ],
                    "timestamp": "2011-12-12T10:04:30.000000+00:00",
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • Réponse
    {
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }{
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }
Vous devez fournir la version du modèle que vous souhaitez interroger pour les prédictions dans la demande. Vous pouvez utiliser le numéro de version entier ou les valeurs spéciales live ou staging pour interroger la version actuelle du modèle Live ou Staging.
Format de demande
NomSaisie de texteRequisDESCRIPTION
documentsarray<Comment>ouiA batch of maximum 4096 documents, in the format described in Comment Reference. Larger batches are faster (per document) than smaller ones.
thresholdNumériquenonLe seuil de confiance par lequel filtrer les résultats du libellé. Un nombre entre 1.0 et 0.0. 0.0 inclura tous les résultats. Régler sur "auto" pour utiliser les seuils automatiques. S'il n'est pas défini, le seuil par défaut de 0.25 sera utilisé.
labelsarray<Label>nonListe de libellés demandés à renvoyer avec des seuils éventuellement spécifiques au libellé.

Label a le format suivant :

NomSaisie de texteRequisDESCRIPTION
namearray<string>ouiNom du libellé à renvoyer, formaté sous la forme d'une liste de libellés hiérarchisés. Par exemple, le libellé "Parent Label > Child Label" aura le format ["Parent Label", "Child Label"].
thresholdNumériquenonLe seuil de confiance à utiliser pour le libellé. S'il n'est pas spécifié, utilise par défaut le seuil spécifié au niveau supérieur.
Format de réponse
NomSaisie de texteDESCRIPTION
statusstringok if the request is successful, or error in case of an error. See Overview to learn more about error responses.
predictionsarray<array<Label>>Une liste de array<Label> dans le même ordre que les commentaires de la requête, où chaque Label a le format décrit ici.
entitiesarray<array<Entity>>Une liste de array<Entity> dans le même ordre que les commentaires de la requête, où chaque Entity a le format décrit ici.
label_propertiesarray<LabelProperty>Tableau contenant les propriétés de libellé prévues pour ce commentaire, où chaque LabelProperty a le format décrit ici.
modelModèleInformations sur le modèle utilisé pour faire les prévisions, au format décrit ici.

Get predictions for latest model version

To get predictions from the latest available model version for a dataset, refer to the instructions in Get predictions for a pinned model, but use latest instead of a pinned model version.

Obtenir les prédictions d'un modèle épinglé pour les e-mails bruts

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails

Autorisations requises : Afficher les libellés, Afficher les sources

Important :

Opération facturable

1 AI Unit vous sera facturé par e-mail brut fourni dans le corps de la demande.

  • Bash
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "raw_email": {
            "body": {
              "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
            },
            "headers": {
              "parsed": {
                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                "From": "alice@company.com",
                "Message-ID": "abcdef@company.com",
                "References": "<01234@company.com> <56789@company.com>",
                "Subject": "Figures Request",
                "To": "bob@organisation.org"
              }
            }
          },
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "raw_email": {
            "body": {
              "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
            },
            "headers": {
              "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
            }
          },
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "include_comments": false,
      "threshold": 0.25,
      "transform_tag": "generic.0.CONVKER5"
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "raw_email": {
            "body": {
              "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
            },
            "headers": {
              "parsed": {
                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                "From": "alice@company.com",
                "Message-ID": "abcdef@company.com",
                "References": "<01234@company.com> <56789@company.com>",
                "Subject": "Figures Request",
                "To": "bob@organisation.org"
              }
            }
          },
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "raw_email": {
            "body": {
              "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
            },
            "headers": {
              "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
            }
          },
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "include_comments": false,
      "threshold": 0.25,
      "transform_tag": "generic.0.CONVKER5"
    }'
    
  • Nœud
    const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              raw_email: {
                body: {
                  plain:
                    "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice",
                },
                headers: {
                  parsed: {
                    Date: "Thu, 09 Jan 2020 16:34:45 +0000",
                    From: "alice@company.com",
                    "Message-ID": "abcdef@company.com",
                    References: "<01234@company.com> <56789@company.com>",
                    Subject: "Figures Request",
                    To: "bob@organisation.org",
                  },
                },
              },
              user_properties: { "string:City": "London" },
            },
            {
              raw_email: {
                body: {
                  html: "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>",
                },
                headers: {
                  raw: "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com",
                },
              },
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          include_comments: false,
          threshold: 0.25,
          transform_tag: "generic.0.CONVKER5",
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              raw_email: {
                body: {
                  plain:
                    "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice",
                },
                headers: {
                  parsed: {
                    Date: "Thu, 09 Jan 2020 16:34:45 +0000",
                    From: "alice@company.com",
                    "Message-ID": "abcdef@company.com",
                    References: "<01234@company.com> <56789@company.com>",
                    Subject: "Figures Request",
                    To: "bob@organisation.org",
                  },
                },
              },
              user_properties: { "string:City": "London" },
            },
            {
              raw_email: {
                body: {
                  html: "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>",
                },
                headers: {
                  raw: "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com",
                },
              },
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          include_comments: false,
          threshold: 0.25,
          transform_tag: "generic.0.CONVKER5",
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "transform_tag": "generic.0.CONVKER5",
            "documents": [
                {
                    "raw_email": {
                        "headers": {
                            "parsed": {
                                "Message-ID": "abcdef@company.com",
                                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                                "Subject": "Figures Request",
                                "From": "alice@company.com",
                                "To": "bob@organisation.org",
                                "References": "<01234@company.com> <56789@company.com>",
                            }
                        },
                        "body": {
                            "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
                        },
                    },
                    "user_properties": {"string:City": "London"},
                },
                {
                    "raw_email": {
                        "headers": {
                            "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
                        },
                        "body": {
                            "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
                        },
                    },
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
            "include_comments": False,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "transform_tag": "generic.0.CONVKER5",
            "documents": [
                {
                    "raw_email": {
                        "headers": {
                            "parsed": {
                                "Message-ID": "abcdef@company.com",
                                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                                "Subject": "Figures Request",
                                "From": "alice@company.com",
                                "To": "bob@organisation.org",
                                "References": "<01234@company.com> <56789@company.com>",
                            }
                        },
                        "body": {
                            "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
                        },
                    },
                    "user_properties": {"string:City": "London"},
                },
                {
                    "raw_email": {
                        "headers": {
                            "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
                        },
                        "body": {
                            "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
                        },
                    },
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
            "include_comments": False,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • Réponse
    {
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }{
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }
Vous devez fournir la version du modèle que vous souhaitez interroger pour les prédictions dans la demande. Vous pouvez utiliser le numéro de version entier ou les valeurs spéciales live ou staging pour interroger la version actuelle du modèle Live ou Staging.
Format de demande
NomSaisie de texteRequisDESCRIPTION
transform_tagstringouiUne balise spécifiant comment les données brutes doivent être traitées.
documentsarray<Document>ouiUn lot de 4096 documents au maximum, au format décrit ci-dessous. Les lots plus volumineux sont plus rapides (par document) que les plus petits.
thresholdNumériquenonLe seuil de confiance par lequel filtrer les résultats du libellé. Un nombre entre 1.0 et 0.0. 0.0 inclura tous les résultats. Régler sur "auto" pour utiliser les seuils automatiques. S'il n'est pas défini, le seuil par défaut de 0.25 sera utilisé.
labelsarray<Label>nonListe de libellés demandés à renvoyer avec des seuils éventuellement spécifiques au libellé.
include_commentsbooleannonSi ce paramètre est défini sur true, les commentaires analysés à partir des e-mails seront renvoyés dans le corps de la réponse.
Document a le format suivant :
NomSaisie de texteRequisDESCRIPTION
raw_emailRawEmailouiDonnées de l'e-mail, au format décrit ici.
user_propertiesmap<string, string | number>nonToutes les métadonnées définies par l'utilisateur qui s'appliquent au commentaire. Le format est décrit ici.
Remarque : Certaines propriétés utilisateur sont générées en fonction du contenu de l'e-mail. Si celles-ci sont en conflit avec les propriétés utilisateur téléchargées, la requête échouera avec 422 Unprocessable Entity.
Label a le format suivant :
NomSaisie de texteRequisDESCRIPTION
namearray<string>ouiNom du libellé à renvoyer, formaté sous la forme d'une liste de libellés hiérarchisés. Par exemple, le libellé "Parent Label > Child Label" aura le format ["Parent Label", "Child Label"].
thresholdNumériquenonLe seuil de confiance à utiliser pour le libellé. S'il n'est pas spécifié, utilise par défaut le seuil spécifié au niveau supérieur.
Format de réponse
NomSaisie de texteDESCRIPTION
statusstringok if the request is successful, or error in case of an error. SeeOverview to learn more about error responses.
commentsarray<Comment>Une liste de commentaires analysés à partir des e-mails bruts téléchargés, au format décrit dans la Référence du commentaire. Uniquement renvoyé si vous avez défini include_comments dans la requête.
predictionsarray<array<Label>>Une liste de array<Label> dans le même ordre que les commentaires de la requête, où chaque Label a le format décrit ici.
entitiesarray<array<Entity>>Une liste de array<Entity> dans le même ordre que les commentaires de la requête, où chaque Entity a le format décrit ici.
label_propertiesarray<LabelProperty>Tableau contenant les propriétés de libellé prévues pour ce commentaire, où chaque LabelProperty a le format décrit ici.
modelModèleInformations sur le modèle utilisé pour faire les prévisions, au format décrit ici.
Remarque :

Pour les requêtes volumineuses, ce point de terminaison peut prendre plus de temps à répondre. Vous devez augmenter le délai d'attente de votre client.

Obtenir les prédictions d'un modèle épinglé par ID de commentaire

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments

Autorisations requises : Afficher les libellés, Afficher les sources

  • Bash
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "threshold": 0.25,
      "uids": [
        "18ba5ce699f8da1f.0001",
        "18ba5ce699f8da1f.0002"
      ]
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "threshold": 0.25,
      "uids": [
        "18ba5ce699f8da1f.0001",
        "18ba5ce699f8da1f.0002"
      ]
    }'
    
  • Nœud
    const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          threshold: 0.25,
          uids: ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          threshold: 0.25,
          uids: ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "uids": ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "uids": ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • Réponse
    {
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        {
          "entities": [
            {
              "capture_ids": [],
              "formatted_value": "Bob",
              "id": "76aebf2646577a1d",
              "kind": "person",
              "name": "person",
              "probability": null,
              "span": {
                "char_end": 6,
                "char_start": 3,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 12,
                "utf16_byte_start": 6
              }
            },
            {
              "capture_ids": [],
              "formatted_value": "2020-01-09 00:00 UTC",
              "id": "20beddf4c5f5bb61",
              "kind": "date",
              "name": "date",
              "probability": null,
              "span": {
                "char_end": 48,
                "char_start": 43,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 96,
                "utf16_byte_start": 86
              }
            }
          ],
          "labels": [
            {
              "name": ["Some Label"],
              "probability": 0.8896465003490448
            },
            {
              "name": ["Parent Label", "Child Label"],
              "probability": 0.26687008142471313,
              "sentiment": 0.8762539502232571
            }
          ],
          "uid": "18ba5ce699f8da1f.0001"
        },
        {
          "entities": [],
          "labels": [
            {
              "name": ["Other Label"],
              "probability": 0.6406207121908665
            }
          ],
          "uid": "18ba5ce699f8da1f.0002"
        }
      ],
      "status": "ok"
    }{
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        {
          "entities": [
            {
              "capture_ids": [],
              "formatted_value": "Bob",
              "id": "76aebf2646577a1d",
              "kind": "person",
              "name": "person",
              "probability": null,
              "span": {
                "char_end": 6,
                "char_start": 3,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 12,
                "utf16_byte_start": 6
              }
            },
            {
              "capture_ids": [],
              "formatted_value": "2020-01-09 00:00 UTC",
              "id": "20beddf4c5f5bb61",
              "kind": "date",
              "name": "date",
              "probability": null,
              "span": {
                "char_end": 48,
                "char_start": 43,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 96,
                "utf16_byte_start": 86
              }
            }
          ],
          "labels": [
            {
              "name": ["Some Label"],
              "probability": 0.8896465003490448
            },
            {
              "name": ["Parent Label", "Child Label"],
              "probability": 0.26687008142471313,
              "sentiment": 0.8762539502232571
            }
          ],
          "uid": "18ba5ce699f8da1f.0001"
        },
        {
          "entities": [],
          "labels": [
            {
              "name": ["Other Label"],
              "probability": 0.6406207121908665
            }
          ],
          "uid": "18ba5ce699f8da1f.0002"
        }
      ],
      "status": "ok"
    }
Vous devez fournir la version du modèle que vous souhaitez interroger pour les prédictions dans la demande. Vous pouvez utiliser le numéro de version entier ou les valeurs spéciales live ou staging pour interroger la version actuelle du modèle Live ou Staging.
Format de demande
NomSaisie de texteRequisDESCRIPTION
uidsarray<string>ouiListe d'au maximum 4096 avec source_id-s et comment_id-s combinés au format source_id.comment_id. Les sources n'ont pas besoin d'appartenir à l'ensemble de données actuel. Vous pouvez donc demander des prédictions de commentaires pour une source dans un ensemble de données différent (ou non). Les listes plus volumineuses sont plus rapides (par commentaire) que les plus petites.
thresholdNumériquenonLe seuil de confiance par lequel filtrer les résultats du libellé. Un nombre entre 1.0 et 0.0. 0.0 inclura tous les résultats. Régler sur "auto" pour utiliser les seuils automatiques. S'il n'est pas défini, le seuil par défaut de 0.25 sera utilisé.
labelsarray<Label>nonListe de libellés demandés à renvoyer avec des seuils éventuellement spécifiques au libellé.
Label a le format suivant :
NomSaisie de texteRequisDESCRIPTION
namearray<string>ouiNom du libellé à renvoyer, formaté sous la forme d'une liste de libellés hiérarchisés. Par exemple, le libellé "Parent Label > Child Label" aura le format ["Parent Label", "Child Label"].
thresholdNumériquenonLe seuil de confiance à utiliser pour le libellé. S'il n'est pas spécifié, utilise par défaut le seuil spécifié au niveau supérieur.
Format de réponse
NomSaisie de texteDESCRIPTION
statusstringok si la requête est réussie, ou error en cas d'erreur. Consultez la Vue d'ensemble pour en savoir plus sur les réponses d'erreur.
predictionsarray<Prediction>Une liste de prédictions au format décrit ci-dessous.
modelModèleInformations sur le modèle utilisé pour faire les prévisions, au format décrit ici.
Prediction a le format suivant :
NomSaisie de texteDESCRIPTION
uidstringUne valeur source_id et comment_id combinée au format source_id.comment_id.
labelsarray<Label>Tableau contenant les libellés prévus pour ce commentaire, où Label a le format décrit ici.
entitiesarray<Entity>Tableau contenant les entités prévues pour ce commentaire, où Entity a le format décrit ici.
label_propertiesarray<LabelProperty>Tableau contenant les propriétés de libellé prévues pour ce commentaire, où chaque LabelProperty a le format décrit ici.
Remarque : Pour les requêtes volumineuses, ce point de terminaison peut prendre plus de temps à répondre. Vous devez augmenter le délai d'attente de votre client.

Obtenir les statistiques de validation du modèle

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/validation

Autorisations requises : Afficher les libellés, Afficher les sources

  • Bash
    curl -X GET 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation' \
        -H "Authorization: Bearer $REINFER_TOKEN"curl -X GET 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation' \
        -H "Authorization: Bearer $REINFER_TOKEN"
    
  • Nœud
    const request = require("request");
    
    request.get(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.get(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.get(
        "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.get(
        "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • Réponse
    {
      "status": "ok",
      "validation": {
        "coverage": 0.9119927883148193,
        "dataset_quality": "good",
        "labels": [
          {
            "name": "Notification",
            "parts": ["Notification"]
          },
          {
            "name": "Notification > Out of Office",
            "parts": ["Notification", "Out of Office"]
          },
          {
            "name": "Notification > Public Holiday",
            "parts": ["Notification", "Public Holiday"]
          }
        ],
        "mean_average_precision_safe": 0.83,
        "num_amber_labels": 1,
        "num_labels": 3,
        "num_red_labels": 1,
        "num_reviewed_comments": 10251,
        "version": 5
      }
    }{
      "status": "ok",
      "validation": {
        "coverage": 0.9119927883148193,
        "dataset_quality": "good",
        "labels": [
          {
            "name": "Notification",
            "parts": ["Notification"]
          },
          {
            "name": "Notification > Out of Office",
            "parts": ["Notification", "Out of Office"]
          },
          {
            "name": "Notification > Public Holiday",
            "parts": ["Notification", "Public Holiday"]
          }
        ],
        "mean_average_precision_safe": 0.83,
        "num_amber_labels": 1,
        "num_labels": 3,
        "num_red_labels": 1,
        "num_reviewed_comments": 10251,
        "version": 5
      }
    }
Cet itinéraire renvoie des statistiques sur les performances d'un modèle. Les mêmes statistiques peuvent être consultées sur la page Validation. Les statistiques d'un modèle peuvent être demandées avec son nombre entier version . Vous pouvez utiliser les valeurs spéciales live et staging pour récupérer les statistiques des versions de modèle Live ou Staging actuelles, ou la valeur spéciale latest pour la version de modèle la plus récemment disponible.
Bien que ce point de terminaison accepte à la fois les versions de modèle épinglées et non épinglées, nous vous recommandons d'interroger les versions de modèle épinglées ou la valeur spéciale latest, car il n'est pas garanti que les statistiques soient disponibles pour les versions de modèle non épinglées.

L'objet de réponse validation contient les champs suivants :
NomSaisie de texteDESCRIPTION
mean_average_precision_safefloatScore moyen de précision (entre 0.0 et 1.0). Ce champ sera null si MAP n’est pas disponible.
num_labelsNumériqueNombre de libellés dans la taxonomie (au moment où la version du modèle a été épinglée).
labelsarray<Label>Liste des libellés dans la taxonomie (au moment où la version du modèle a été épinglée). Notez que, comme le montre l'exemple de réponse, les libellés parents sont renvoyés en tant que libellé distinct et sont renvoyés en tant que partie des libellés enfants.
num_reviewed_commentsNumériqueNombre de commentaires révisés dans le jeu de données (au moment où la version du modèle a été épinglée).
versionNumériqueVersion du modèle.
num_amber_labelsNumériqueNombre de libellés dans un état d'avertissement orange.
num_red_labelsNumériqueNombre de libellés dans un état d'avertissement rouge.
dataset_scoreNumériqueScore global de l'ensemble de données, compris entre 0 et 100.
dataset_qualitystringL'un des "poor", "average", "good", "excellent", représentant le classement de qualité global de l'ensemble de données. Peut être null s'il n'y a pas assez de données.
balancefloatUne mesure de la similitude entre les commentaires examinés et non examinés (entre 0.0 et 1.0). Peut être null s'il n'y a pas assez de données.
balance_qualitystringL'un des "poor", "average", "good", "excellent", représentant le classement de qualité de l'équilibre. Peut être null s'il n'y a pas assez de données.
coveragefloatUne valeur fractionnée de la couverture du libellé dans l'ensemble de données (entre 0.0 et 1.0). Peut être null s'il n'y a pas assez de données.
coverage_qualitystringL'un des "poor", "average", "good", "excellent", représentant le classement de qualité de la couverture. Peut être null s'il n'y a pas assez de données.
all_labels_qualitystringL'un des "poor", "average", "good", "excellent", représentant le classement de qualité de tous les libellés. Peut être null s'il n'y a pas assez de données.
underperforming_labels_qualitystringL'un des "poor", "average", "good", "excellent", représentant le classement de qualité des libellés peu performants. Peut être null s'il n'y a pas assez de données.
Label a le format suivant :
NomSaisie de texteDESCRIPTION
namestringNom de l'étiquette, au format chaîne.
partsarray<string>Nom du libellé, formaté sous la forme d'une liste de libellés hiérarchisés. Par exemple, le libellé "Parent Label > Child Label" aura le format ["Parent Label", "Child Label"]

Cette page vous a-t-elle été utile ?

Obtenez l'aide dont vous avez besoin
Formation RPA - Cours d'automatisation
Forum de la communauté UiPath
Uipath Logo White
Confiance et sécurité
© 2005-2024 UiPath Tous droits réservés.