document-understanding
2023.10
false
- Überblick
- Document Understanding-Prozess
- Schnellstart-Tutorials
- Framework-Komponenten
- Übersicht zur Dokumentklassifizierung
- „Klassifizierer konfigurieren“-Assistent von Classify Document Scope
- FlexiCapture Classifier
- Intelligenter Schlüsselwortklassifizierer
- Schlüsselwortbasierte Classifier (Keyword Based Classifier)
- Machine Learning Classifier
- Dokumentklassifizierung – verwandte Aktivitäten
- ML-Pakete
- Überblick
- Document Understanding – ML-Paket
- DocumentClassifier – ML-Paket
- ML-Pakete mit OCR-Funktionen
- 1040 – ML-Paket
- 1040 Anlage C – ML-Paket
- 1040 Anlage D – ML-Paket
- 1040 Anlage E – ML-Paket
- 4506T – ML-Paket
- 990 – ML-Paket – Vorschau
- ACORD125 – ML-Paket
- ACORD126 – ML-Paket
- ACORD131 – ML-Paket
- ACORD140 – ML-Paket
- ACORD25 – ML-Paket
- Bank Statements – ML-Paket
- BillsOfLading – ML-Paket
- Certificate of Incorporation – ML-Paket
- Certificates of Origin – ML-Paket
- Checks – ML-Paket
- Children Product Certificate – ML-Paket
- CMS1500 – ML-Paket
- EU Declaration of Conformity – ML-Paket
- Financial Statements – ML-Paket
- FM1003 – ML-Paket
- I9 – ML-Paket
- ID Cards – ML-Paket
- Invoices – ML-Paket
- InvoicesAustralia – ML-Paket
- InvoicesChina – ML-Paket
- InvoicesIndia – ML-Paket
- InvoicesJapan – ML-Paket
- Invoices Shipping – ML-Paket
- Packing Lists – ML-Paket
- Passports – ML-Paket
- Gehaltsabrechnungen (Pay slips) – ML-Paket
- Purchase Orders – ML-Paket
- Receipts – ML-Paket
- RemittanceAdvices – ML-Paket
- UB04 – ML-Paket
- Utility Bills – ML-Paket
- Vehicle Titles – ML-Paket
- W2 – ML-Paket
- W9 – ML-Paket
- Andere out-of-the-box ML-Pakete
- Öffentliche Endpunkte
- Hardwareanforderungen
- Pipelines
- Über Pipelines
- Trainingspipelines
- Auswertungspipelines
- Vollständige Pipelines
- Feinabstimmung
- Dokumentmanager
- OCR-Dienste
- Deep Learning
- Document Understanding – in der Automation Suite bereitgestellt
- Document Understanding – im eigenständigen AI Center bereitgestellt
- Lizenzierung
- Aktivitäten
- UiPath.Abbyy.Activities
- UiPath.AbbyyEmbedded.Activities
- UiPath.DocumentProcessing.Contracts
- UiPath.DocumentUnderstanding.ML.Activities
- UiPath.DocumentUnderstanding.OCR.LocalServer.Activities
- UiPath.IntelligentOCR.Aktivitäten (UiPath.IntelligentOCR.Activities)
- UiPath.OCR.Activities
- UiPath.OCR.Contracts
- UiPath.Omnipage.Activities
- UiPath.PDF.Aktivitäten (UiPath.PDF.Activities)
Vollständige Pipelines
Document Understanding-Benutzerhandbuch.
Letzte Aktualisierung 18. Dez. 2024
Vollständige Pipelines
Eine vollständige Pipeline führt gemeinsam eine Trainings- und eine Auswertungspipeline aus.
Wichtig:
Minimale Dataset-Größe
Für die erfolgreiche Ausführung von Trainingspipelines empfehlen wir dringend mindestens 25 Dokumente und mindestens 10 Beispiele für jedes beschriftete Feld in Ihrem Dataset. Andernfalls löst die Pipeline den folgenden Fehler aus:
Dataset Creation Failed
(Dataset-Erstellung fehlgeschlagen).
Training auf GPU vs. CPU
- Bei größeren Datasets müssen Sie mit GPU trainieren. Darüber hinaus ist die Verwendung eines GPUs (AI Robot Pro) für das Training mindestens 10-mal schneller als die Verwendung einer CPU (AI Robot).
- Training auf CPU wird nur für Datasets mit einer Größe von bis zu 5000 Seiten für ML-Pakete ab Version 21.10.x und bis zu 1000 Seiten für andere Versionen von ML-Paketen unterstützt.
- CPU-Training war vor Version 2021.10 auf 500 Seiten begrenzt. Seit 2021.10 waren es 5000 Seiten und ab 2022.4 sind es maximal 1000 Seiten.
Konfigurieren Sie die Trainingspipeline wie folgt:
- Wählen Sie im Feld Pipelinetyp die Option Vollständige Pipelineausführung aus.
- Wählen Sie im Feld Paket wählen das Paket aus, das Sie trainieren und auswerten möchten.
- Wählen Sie im Feld Hauptversion des Pakets wählen eine Hauptversion für Ihr Paket aus.
- Wählen Sie im Feld Nebenversion des Pakets wählen eine Nebenversion für Ihr Paket aus. Es wird dringend empfohlen, immer Nebenversion 0 (Null) zu verwenden.
- Wählen Sie im Feld Eingabe-Dataset wählen ein repräsentatives Trainings-Dataset aus.
- Wählen Sie im Feld „Auswertungs-Dataset wählen“ ein repräsentatives Auswertungs-Dataset aus.
- Geben Sie im Abschnitt Parameter eingeben von Ihrer Pipeline definierte und verwendete Umgebungsvariablen ein, falls vorhanden. Für die meisten Anwendungsfälle muss kein Parameter angegeben werden. Das Modell verwendet erweiterte Techniken, um eine performante Konfiguration zu finden. Hier sind jedoch einige Umgebungsvariablen, die Sie verwenden können:
model.epochs
, die die Anzahl der Epochen für die Trainingspipeline anpasst (Standardwert: 100).- Wählen Sie aus, ob die Pipeline mit der GPU oder CPU trainiert werden soll. Der Schieberegler GPU aktivieren ist standardmäßig deaktiviert. In diesem Fall wird die Pipeline mit der CPU trainiert. Die Verwendung einer GPU (AI Robot Pro) für das Training ist mindestens 10 Mal schneller als die Verwendung einer CPU (AI Robot). Darüber hinaus wird das Training mit der CPU nur für Datasets mit bis zu 1000 Bildern unterstützt. Bei größeren Datasets müssen Sie die GPU für das Training verwenden.
-
Wählen Sie eine der Optionen aus, wann die Pipeline ausgeführt werden soll: Jetzt ausführen, Zeitbasiert oder Wiederkehrend. Falls Sie die Variable
auto_retraining
verwenden, wählen Sie Wiederkehrend aus.
Nachdem Sie alle Felder konfiguriert haben, klicken Sie auf Erstellen. Die Pipeline wird erstellt.
Bei einer Auswertungspipeline umfasst der Bereich Ausgaben auch einen Ordner namens artifacts/eval_metrics, der zwei Dateien enthält:
evaluation_default.xlsx
ist eine Excel-Tabelle mit einem nebeneinanderstehenden Vergleich der Ground Truth mit dem vorhergesagten Wert für jedes vom Modell vorhergesagte Feld sowie einer Genauigkeitsmetrik pro Dokument, um die Genauigkeit zu erhöhen. Daher werden oben die ungenausten Dokumente gezeigt, um die Diagnose und Fehlerbehebung zu erleichtern.-
evaluation_metrics_default.txt
enthält die F1-Punktzahl der vorhergesagten Felder.Für Zeilenelemente wird eine globale Punktzahl aller Spalten zusammen ermittelt.