- 概要
- Document Understanding Process
- クイックスタート チュートリアル
- フレームワーク コンポーネント
- ML パッケージ
- パイプライン
- パイプラインについて
- トレーニング パイプライン
- 評価パイプライン
- フル パイプライン
- 微調整する
- 自動微調整ループ (パブリック プレビュー)
- Document Manager
- OCR サービス
- Automation Suite にデプロイされた Document Understanding
- AI Center スタンドアロンにデプロイされた Document Understanding
- ディープ ラーニング
- ライセンス
- 参照
- UiPath.Abbyy.Activities
- UiPath.AbbyyEmbedded.Activities
- UiPath.DocumentUnderstanding.ML.Activities
- UiPath.DocumentUnderstanding.OCR.LocalServer.Activities
- UiPath.IntelligentOCR.Activities
- UiPath.OCR.Activities
- UiPath.OCR.Contracts
- UiPath.DocumentProcessing.Contracts
- UiPath.OmniPage.Activities
- UiPath.PDF.Activities
Document Understanding ガイド
自動微調整ループ (パブリック プレビュー)
ML モデルをトレーニング/再トレーニングするときにまず留意すべきは、最適な結果は、すべてのデータを 1 つの大きな、そして理想的には、慎重にキュレーションされたデータセットに蓄積することによって得られるということです。データセット A でトレーニングしてから、生成されたモデルをデータセット B で再トレーニングした場合の結果は、結合されたデータセット A+B でトレーニングした場合よりもはるかに悪くなります。
2 つ目に留意すべき点は、すべてのデータが同じではないということです。Document Manager などの専用ツールでラベル付けされたデータは、検証ステーションなどの、別の目的で使用されるツールでラベル付けされたデータよりも一般に質が高いため、より優れたパフォーマンスのモデルが生成されます。検証ステーションから得られるデータは、業務プロセスの観点からは高品質かもしれませんが、モデルのトレーニングの観点から見るとそれほど高品質ではありません。ML モデルは独特の形式のデータを必要としており、それはほとんどの場合、業務プロセスで必要な形式とは異なるためです。たとえば、10 ページの請求書では請求書番号が各ページに表示されている可能性がありますが、検証ステーションでは最初のページで指定すれば十分であるのに対して、Document Manager ではすべてのページでラベル付けを行います。この場合、正しいラベルの 90% が検証ステーションのデータに存在しないことになります。以上の理由から、検証ステーションのデータの有用性は前述のとおり限定的といえます。
ML モデルを効果的にトレーニングするには、包括的、高品質、かつ代表的な単一のデータセットが必要です。そのため、累積的アプローチでは、追加のデータを入力データセットに加えて、毎回 ML モデルをより大きなデータセットでトレーニングします。これを行う方法の 1 つに、自動再トレーニング ループの使用が挙げられます。
この機能をよりよく理解するために、自動微調整機能が ML モデルのライフサイクルのどこで適用されるかを見てみましょう。