- Überblick
- Verträge zur Dokumentverarbeitung
- Versionshinweise
- Über die DocumentProcessing-Verträge
- Box-Klasse
- IPersistedActivity-Schnittstelle
- PrettyBoxConverter-Klasse
- IClassifierActivity-Schnittstelle
- IClassifierCapabilitiesProvider-Schnittstelle
- ClassifierDocumentType-Klasse
- ClassifierResult-Klasse
- ClassifierCodeActivity-Klasse
- ClassifierNativeActivity-Klasse
- ClassifierAsyncCodeActivity-Klasse
- ClassifierDocumentTypeCapability-Klasse
- ExtractorAsyncCodeActivity-Klasse
- ExtractorCodeActivity-Klasse
- ExtractorDocumentType-Klasse
- ExtractorDocumentTypeCapabilities-Klasse
- ExtractorFieldCapability-Klasse
- ExtractorNativeActivity-Klasse
- ExtractorResult-Klasse
- ICapabilitiesProvider-Schnittstelle
- IExtractorActivity-Schnittstelle
- ExtractorPayload-Klasse
- DocumentActionPriority-Enumeration
- DocumentActionData-Klasse
- DocumentActionStatus-Enumeration
- DocumentActionType-Enumeration
- DocumentClassificationActionData-Klasse
- DocumentValidationActionData-Klasse
- UserData-Klasse
- Document-Klasse
- DocumentSplittingResult-Klasse
- DomExtensions-Klasse
- Page-Klasse
- PageSection-Klasse
- Polygon-Klasse
- PolygonConverter-Klasse
- Metadatenklasse
- WordGroup-Klasse
- Word-Klasse
- ProcessingSource-Enumeration
- ResultsTableCell-Klasse
- ResultsTableValue-Klasse
- ResultsTableColumnInfo-Klasse
- ResultsTable-Klasse
- Rotation-Enumeration
- SectionType-Enumeration
- WordGroupType-Enumeration
- IDocumentTextProjection-Schnittstelle
- ClassificationResult-Klasse
- ExtractionResult-Klasse
- ResultsDocument-Klasse
- ResultsDocumentBounds-Klasse
- ResultsDataPoint-Klasse
- ResultsValue-Klasse
- ResultsContentReference-Klasse
- ResultsValueTokens-Klasse
- ResultsDerivedField-Klasse
- ResultsDataSource-Enumeration
- ResultConstants-Klasse
- SimpleFieldValue-Klasse
- TableFieldValue-Klasse
- DocumentGroup-Klasse
- DocumentTaxonomy-Klasse
- DocumentType-Klasse
- Field-Klasse
- FieldType-Enumeration
- LanguageInfo-Klasse
- MetadataEntry-Klasse
- TextType-Aufzählung
- TypeField-Klasse
- ITrackingActivity-Schnittstelle
- ITrainableActivity-Schnittstelle
- ITrainableClassifierActivity-Schnittstelle
- ITrainableExtractorActivity-Schnittstelle
- TrainableClassifierAsyncCodeActivity-Klasse
- TrainableClassifierCodeActivity-Klasse
- TrainableClassifierNativeActivity-Klasse
- TrainableExtractorAsyncCodeActivity-Klasse
- TrainableExtractorCodeActivity-Klasse
- TrainableExtractorNativeActivity-Klasse
- Document Understanding Digitizer
- Document Understanding ML
- Document Understanding OCR Local Server
- Document Understanding
- Versionshinweise
- Über das Document Understanding-Aktivitätspaket
- Projektkompatibilität
- PDF-Passwort festlegen
- Merge PDFs
- Get PDF Page Count
- Extract PDF Text
- Extract PDF Images
- PDF-Seitenbereich extrahieren
- Extract Document Data
- Validierungsaufgabe erstellen und warten
- Wait for Validation Task and Resume
- Create Validation Task
- Dokument klassifizieren (Classify Document)
- Create Classification Validation Task
- Create Classification Validation Task and Wait
- Wait For Classification Validation Task And Resume
- IntelligentOCR
- Versionshinweise
- Über das IntelligentOCR-Aktivitätspaket
- Projektkompatibilität
- Konfigurieren der Authentifizierung
- Taxonomie laden (Load Taxonomy)
- Digitalisieren von Dokumenten
- Dokumentbereich klassifizieren (Classify Document Scope)
- Schlüsselwortbasierte Classifier (Keyword Based Classifier)
- Document Understanding-Projektklassifizierer
- Intelligenter Schlüsselwortklassifizierer
- Create Document Validation Action
- Wait For Document Classification Action And Resume
- Klassifizierer-Scope trainieren
- Keyword Based Classifier Trainer
- Intelligent Keyword Classifier Trainer
- Datenextraktionsumfang
- Document Understanding-Projektextraktor
- Regex Based Extractor
- Form Extractor
- Extraktor für intelligente Formulare
- Aktuelle Validierungsstation
- Create Document Validation Action
- Wait For Document Validation Action And Resume
- Train Extractors Scope
- Extraktionsergebnisse exportieren
- ML-Services
- OCR
- OCR-Verträge
- Versionshinweise
- Über die OCR-Verträge
- Projektkompatibilität
- IOCRActivity-Schnittstelle
- OCRAsyncCodeActivity-Klasse
- OCRCodeActivity-Klasse
- OCRNativeActivity-Klasse
- Character-Klasse
- OCRResult-Klasse
- Word-Klasse
- FontStyles-Enumeration
- OCRRotation-Enumeration
- OCRCapabilities-Klasse
- OCRScrapeBase-Klasse
- OCRScrapeFactory-Klasse
- ScrapeControlBase-Klasse
- ScrapeEngineUsages-Enumeration
- ScrapeEngineBase
- ScrapeEngineFactory-Klasse
- ScrapeEngineProvider-Klasse
- OmniPage
- PDF
- [Nicht aufgeführt] Abbyy
- Versionshinweise
- Über das Abbyy-Aktivitätspaket
- Projektkompatibilität
- Abbyy OCR
- Abbyy Cloud OCR
- FlexiCapture Classifier
- FlexiCapture Extractor
- FlexiCapture Scope
- Dokument klassifizieren (Classify Document)
- Dokument verarbeiten (Process Document)
- Dokument validieren (Validate Document)
- Dokument exportieren (Export Document)
- Feld erhalten (Get Field)
- Tabelle erhalten (Get Table)
- Vorbereiten der Validierungsstationsdaten
- [Nicht aufgeführt] Abbyy Embedded
Machine Learning Extractor Trainer
UiPath.DocumentUnderstanding.ML.Activities.MachineLearningExtractorTrainer
Ermöglicht Daten, die über die Validation Station verarbeitet wurden, zu erfassen und in Document Manager zu importieren. Diese Aktivität kann nur zusammen mit der Aktivität Train Extractors Scope verwendet werden.
Allgemein
- AnzeigeName (DisplayName) - Der Anzeigename der Aktivität.
Lokaler Speicher
- Ausgabeordner – Das Verzeichnis, in dem die gesammelten Daten gespeichert werden. Sobald die Daten gespeichert sind, können sie in Trainingstools für maschinelles Lernen importiert werden.
Sonstiges
- Privat (Private) - Bei Auswahl werden die Werte von Variablen und Argumenten nicht mehr auf der Stufe Verbose protokolliert.
Endpunkt des öffentlichen Datasets angeben
- Dataset-ApiKey – Der Authentifizierungsschlüssel des Datasets.
- Dataset-Endpunkt – Der Endpunkt des Datasets, an dem Trainingsdaten hochgeladen werden können. Sobald ein Dataset öffentlich ist, kann es außerhalb der UiPath®- Umgebung über einen Endpunkt und mithilfe eines API-Schlüssels aufgerufen werden. Tun Sie dies, wenn Sie Datasets in eine AI Center-Instanz hochladen möchten, mit der Sie nicht verbunden sind (z. B. bei hybriden Bereitstellungen, bei denen sich das AI Center in der Cloud und der Roboter mit einem lokalen Mandanten verbunden ist).
Privates Dataset für Projekt auswählen
- Dataset – Das Dataset, in das die Trainingsdaten hochgeladen werden können. Wenn der Roboter mit einem Mandanten verbunden ist, für den das AI Center aktiviert ist, können Sie alle Datensätze aus dem AI Center im Dropdownmenü anzeigen und den Ordner auswählen, in den die validierten Dokumente hochgeladen werden sollen, indem Sie das Dropdownmenü verwenden.
-
Projekt – Das Projekt, in das die Trainingsdaten hochgeladen werden können.
Hinweis: Projekt- und Dataset-Auswahl sind nur aktiviert, wenn eine Verbindung mit dem Orchestrator besteht. Weitere Informationen zu öffentlichen/privaten Datasets finden Sie unter Verwalten von Datasets.
Server
- BeiFehlerErneutVersuchen - Bei vorübergehendem Fehler erneut versuchen Dieses Feld unterstützt nur boolesche Werte (True, False). Der Standardwert ist True
- Zeitüberschreitung (Millisekunden) - Gibt die Zeitspanne (in Millisekunden) an, in der auf eine Antwort vom Server gewartet wird, bevor ein Fehler ausgelöst wird. Der Standardwert ist 100.000 Millisekunden (100 Sekunden).
Der Machine Learning Extractor Trainer sammelt das menschliche Feedback für Sie in einem Verzeichnis Ihrer Wahl. Sobald Sie Daten sammeln und ein ML-Modell erneut trainieren möchten, können Sie einfach den Inhalt des Verzeichnisses zippen und in Document Manager hochladen, um Daten zu sammeln und zu filtern.
Um die Aktivität Machine Learning Extractor Trainer zu verwenden, führen Sie die folgenden Schritte aus:
- Verwenden Sie den Taxonomiemanager-Assistenten, um Ihre Dokumenttypen und Felder zu definieren.
- Fügen Sie einen Machine Learning Extractor Trainer in eine Train Extractors Scope- Aktivität ein.
- Geben Sie im automatisch geöffneten Machine Learning Extractor -Assistenten Informationen für das Feld Endpunkt ein. Sie können einen der öffentlichen Endpunkte auswählen. Weitere Informationen zu öffentlichen Endpunkten finden Sie unter Öffentliche Endpunkte.
- Aktivieren Sie das Kontrollkästchen Aktivitätsargumente aktualisieren, wenn Sie die eingegebenen Werte auch als Eingabeargumente für die Aktivität verwenden möchten, genauer gesagt für den Endpunkt.
- Wählen Sie Funktionen abrufen aus.
Der Assistent wird nach diesem Vorgang geschlossen
- Geben Sie einen Wert für den Ausgabeordner ein.
- Wählen Sie die Option Extraktoren konfigurieren im Train Extractors Scope aus.
Ein Assistent wird angezeigt.
Abbildung 1. Der Assistent zum Konfigurieren von Extraktionen
- Der Machine Learning Extractor Trainer ist jetzt bereit für die Konfiguration. Klappen Sie den Dokumenttyp aus, auf den Sie ihn anwenden möchten, und beginnen Sie mit der Auswahl der Felder, auf die Sie trainieren möchten. Wählen Sie dazu die Kontrollkästchen neben den entsprechenden Feldern aus.
- Füllen Sie für jeden Dokumenttyp die Textfelder manuell aus oder wählen Sie aus dem verfügbaren Dropdown-Menü das richtige Klassifizierungsfeld aus, das Sie jedem Feld zuordnen möchten. Die Dropdown-Liste enthält alle Felder, die der Machine Learning Extractor Trainer mithilfe des im Machine Learning Extractor-Assistenten eingegebenen Endpunkts als Extraktionsfunktion deklariert.
Hinweis: Wenn Sie das Kontrollkästchen aktivieren, das Textfeld jedoch leer lassen, wird letzteres automatisch mit der Dokumenttyp-ID aus der lokalen Taxonomie ausgefüllt. Die Änderungen werden nach dem Speichern angewendet. Wenn Sie die Verwendung einer langen Zeichenfolge für die Feld-ID vermeiden möchten, empfehlen wir Ihnen, einen Wert manuell einzugeben, falls Sie keinen Zugriff auf die interne Taxonomie des Extraktors haben.
- Um zu überprüfen, ob Sie die neuesten Funktionen des Extraktors verwenden, können Sie Extraktor-Funktionen abrufen oder aktualisieren auswählen, wodurch der Assistent Machine Learning Extractor geöffnet wird.
- Wenn Sie eine der Optionen aus einem Dropdownliste wählen, wird dieses Feld automatisch bestätigt.
- Um einen Extraktor basierend auf seinem Extraktionsergebnis zu trainieren, können Sie den genauen alphanumerischen Wert im Feld Framework-Alias festlegen, das zuvor für einen Extraktor verwendet wurde.
- Wählen Sie Speichern aus, sobald alle Felder richtig konfiguriert sind.
Wichtig: Sie können nicht dieselbe Option für zwei verschiedene Felder auswählen.
Document Understanding-Integration
Die Aktivität Machine Learning Extractor Trainer ist Teil der Document Understanding-Lösungen. Weitere Informationen finden Sie im Document Understanding-Leitfaden.