ai-center
latest
false
Importante :
A tradução automática foi aplicada parcialmente neste conteúdo. A localização de um conteúdo recém-publicado pode levar de 1 a 2 semanas para ficar disponível.
UiPath logo, featuring letters U and I in white

AI Center

Automation CloudAutomation SuiteStandalone
Última atualização 23 de dez de 2024

Regressão do AutoML do TPOT

Pacotes do SO > Dados tabulares > TPOTAutoMLRegression

Esse modelo é um modelo de regressão de dados tabulares genéricos (apenas valores numéricos) que precisa ser treinado antes de ser usado para previsões. Ele depende do TPOT para encontrar automaticamente o melhor modelo.

TPOT é uma ferramenta de machine learning python automatizada, que otimiza os pipelines de machine learning usando a programação genética. O TPOT automatiza a parte mais tediosa do aprendizado de máquina, ao explorar de forma inteligente milhares de pipelines possíveis para encontrar o melhor para seus dados. Após o TPOT terminar de pesquisar (ou você se cansar de esperar), ele fornece o código Python para o melhor pipeline que encontrou, para que seja possível improvisar com o pipeline de lá. O TPOT é construído em cima do scikit-learn e, portanto, todo o código que ele gera deve parecer familiar para usuários do scikit-learn.

Detalhes do modelo

Tipo de Entrada

JSON

Descrição da entrada

Recursos usados pelo modelo para fazer previsões. Por exemplo: { “Recurso1”: 12, “Recurso2”: 222, ..., “RecursoN”: 110}

Descrição da saída

JSON com a lista de previsões:

Exemplo:

{ "predictions" : "[12, 12, 2, 354, 12, 2] }{ "predictions" : "[12, 12, 2, 354, 12, 2] }

Pipelines

Todos os três tipos de pipelines (Treinamento completo, Treinamento e Avaliação) são suportados por esse pacote.

Formato do conjunto de dados

Esse pacote de ML procurará arquivos csv em seu conjunto de dados (não em subdiretórios)

Os arquivos csv precisam seguir essas duas regras:

  • a primeira linha dos dados deve conter os nomes do cabeçalho/coluna.
  • todas as colunas devem ser numéricas (inteiro, flutuante). O modelo não é capaz de executar a codificação dos recursos; entreentanto, ele é capaz de realizar a codificação de destino. Se a codificação de destino for executada pelo modelo, no tempo da previsão, o modelo também retornará o rótulo da variável de destino.

Variáveis de Ambiente

  • max_time_mins: tempo para executar o pipeline (em minutos). Quanto maior o tempo do treinamento, melhores as chances de o TPOT encontrar um bom modelo. (padrão: 2)
  • target_column: nome da coluna de destino (padrão: "target")
  • scoring: o TPOT usa o sklearn.model_selection.cross_val_score para avaliar pipelines e, dessa forma, oferece o mesmo suporte para funções de pontuação (padrão: "accuracy"). Usa métricas de pontuação padrão do scikit-learn (https://scikit-learn.org/stable/modules/model_evaluation.html)
  • keep_training: as execuções típicas do TPOT demoram de horas a dias (a menos que seja um conjunto de dados pequeno), mas é possível interromper a execução no meio e ver os melhores resultados até o momento. Se o keep_training estiver definido como True, o TPOT continuará o treinamento de onde o deixou
Observação: se a coluna de destino do seu arquivo for diferente do valor padrão (target), é necessário atualizar a variável de ambiente target_column manualmente. Você pode fazer isso na janela Criar nova execução de pipeline clicando no botão + Adicionar novo na seção Inserir parâmetros. No campo Variável de ambiente adicione a variável (target_column) e, no campo Valor, adicione o nome da coluna do seu arquivo. Quando terminar, clique no símbolo.


Artefatos

O TPOT exporta o código Python correspondente para o pipeline otimizado para um arquivo python, chamado "TPOT_pipeline.py". Após o código terminar a execução, "TPOT_pipeline.py" conterá o código Python para o pipeline otimizado.

Esta página foi útil?

Obtenha a ajuda que você precisa
Aprendendo RPA - Cursos de automação
Fórum da comunidade da Uipath
Uipath Logo White
Confiança e segurança
© 2005-2024 UiPath. Todos os direitos reservados.