communications-mining
latest
false
- API-Dokumentation
- Einleitung
- Verwenden der API
- API-Tutorial
- Zusammenfassung
- Quellen
- Datasets
- Anmerkungen
- Anhänge (Attachments)
- Vorhersagen
- Erstellen Sie einen Stream
- Aktualisieren Sie einen Stream
- Rufen Sie einen Stream nach Namen ab
- Rufen Sie alle Streams ab
- Löschen Sie einen Stream
- Ergebnisse aus Stream abrufen
- Kommentare aus einem Stream abrufen (Legacy)
- Bringen Sie einen Stream vor
- Einen Stream zurücksetzen
- Kennzeichnen Sie eine Ausnahme
- Entfernen Sie das Tag einer Ausnahme
- Prüfungsereignisse
- Alle Benutzer abrufen
- CLI
- Integrationsleitfäden
- Exchange Integration mit einem Azure-Dienstbenutzer
- Exchange-Integration mit der Azure-Anwendungsauthentifizierung
- Echtzeit-Automatisierung
- Abrufen von Daten für Tableau mit Python
- Elasticsearch-Integration
- Selbst gehostete EWS-Integration
- UiPath Automatisierungs-Framework
- UiPath Marketplace-Aktivitäten
- offizielle UiPath-Aktivitäten
- Blog
- Wie Maschinen lernen, Wörter zu verstehen: eine Anleitung zu Einbettungen in NLP
- Eingabeaufforderungsbasiertes Lernen mit Transformers
- Ef Robots II: Wissensdegesterration und Feinabstimmung
- Effiziente Transformer I: Warnmechanismen
- Tief hierarchische, nicht überwachte Absichtsmodellierung: Nutzen ohne Trainingsdaten
- Beheben der Anmerkungsverzerrung durch Communications Mining
- Aktives Lernen: Bessere ML-Modelle in weniger Zeit
- Auf Zahlen kommt es an – Bewertung der Modellleistung mit Metriken
- Darum ist Modellvalidierung wichtig
- Vergleich von Communications Mining und Google AutoML für die Ermittlung von Konversationsdaten
Erstellen Sie einen Stream
Wichtig :
Dieser Inhalt wurde maschinell übersetzt.
Communications Mining-Entwicklerhandbuch
Letzte Aktualisierung 26. Nov. 2024
Erstellen Sie einen Stream
/api/v1/datasets/<project>/<dataset_name>/streams
/api/v1/datasets/<project>/<dataset_name>/streams
Erforderliche Berechtigungen: Streams-Administrator, Bezeichnungen anzeigen
- Bash
curl -X PUT 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "stream": { "comment_filter": { "user_properties": { "number:Spend": { "maximum": 100000, "minimum": 100 }, "number:Transactions": { "one_of": [ 1 ] }, "string:Country": { "one_of": [ "uk", "de" ] } } }, "description": "Used by ACME RPA to create tickets for disputes.", "model": { "label_thresholds": [ { "name": [ "Some Label" ], "threshold": 0.37 }, { "name": [ "Another Label" ], "threshold": 0.46 }, { "name": [ "Parent Label", "Child Label" ], "threshold": 0.41 } ], "version": 8 }, "name": "dispute", "title": "Collateral Disputes" } }'
curl -X PUT 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "stream": { "comment_filter": { "user_properties": { "number:Spend": { "maximum": 100000, "minimum": 100 }, "number:Transactions": { "one_of": [ 1 ] }, "string:Country": { "one_of": [ "uk", "de" ] } } }, "description": "Used by ACME RPA to create tickets for disputes.", "model": { "label_thresholds": [ { "name": [ "Some Label" ], "threshold": 0.37 }, { "name": [ "Another Label" ], "threshold": 0.46 }, { "name": [ "Parent Label", "Child Label" ], "threshold": 0.41 } ], "version": 8 }, "name": "dispute", "title": "Collateral Disputes" } }' - Knoten
const request = require("request"); request.put( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { stream: { comment_filter: { user_properties: { "number:Spend": { maximum: 100000, minimum: 100 }, "number:Transactions": { one_of: [1] }, "string:Country": { one_of: ["uk", "de"] }, }, }, description: "Used by ACME RPA to create tickets for disputes.", model: { label_thresholds: [ { name: ["Some Label"], threshold: 0.37 }, { name: ["Another Label"], threshold: 0.46 }, { name: ["Parent Label", "Child Label"], threshold: 0.41 }, ], version: 8, }, name: "dispute", title: "Collateral Disputes", }, }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } );
const request = require("request"); request.put( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { stream: { comment_filter: { user_properties: { "number:Spend": { maximum: 100000, minimum: 100 }, "number:Transactions": { one_of: [1] }, "string:Country": { one_of: ["uk", "de"] }, }, }, description: "Used by ACME RPA to create tickets for disputes.", model: { label_thresholds: [ { name: ["Some Label"], threshold: 0.37 }, { name: ["Another Label"], threshold: 0.46 }, { name: ["Parent Label", "Child Label"], threshold: 0.41 }, ], version: 8, }, name: "dispute", title: "Collateral Disputes", }, }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } ); - Python
import json import os import requests response = requests.put( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "stream": { "name": "dispute", "title": "Collateral Disputes", "description": "Used by ACME RPA to create tickets for disputes.", "model": { "version": 8, "label_thresholds": [ {"name": ["Some Label"], "threshold": 0.37}, {"name": ["Another Label"], "threshold": 0.46}, { "name": ["Parent Label", "Child Label"], "threshold": 0.41, }, ], }, "comment_filter": { "user_properties": { "string:Country": {"one_of": ["uk", "de"]}, "number:Spend": {"minimum": 100, "maximum": 100000}, "number:Transactions": {"one_of": [1]}, } }, } }, ) print(json.dumps(response.json(), indent=2, sort_keys=True))
import json import os import requests response = requests.put( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "stream": { "name": "dispute", "title": "Collateral Disputes", "description": "Used by ACME RPA to create tickets for disputes.", "model": { "version": 8, "label_thresholds": [ {"name": ["Some Label"], "threshold": 0.37}, {"name": ["Another Label"], "threshold": 0.46}, { "name": ["Parent Label", "Child Label"], "threshold": 0.41, }, ], }, "comment_filter": { "user_properties": { "string:Country": {"one_of": ["uk", "de"]}, "number:Spend": {"minimum": 100, "maximum": 100000}, "number:Transactions": {"one_of": [1]}, } }, } }, ) print(json.dumps(response.json(), indent=2, sort_keys=True)) - Antwort
{ "status": "ok", "stream": { "context": "0", "created_at": "2019-08-03T12:30:00.123456Z", "dataset_id": "abcdef0123456789", "description": "Used by ACME RPA to create tickets for disputes.", "id": "0123456789abcdef", "model": { "version": 8 }, "name": "dispute", "title": "Collateral Disputes", "updated_at": "2019-08-03T12:30:00.123456Z" } }
{ "status": "ok", "stream": { "context": "0", "created_at": "2019-08-03T12:30:00.123456Z", "dataset_id": "abcdef0123456789", "description": "Used by ACME RPA to create tickets for disputes.", "id": "0123456789abcdef", "model": { "version": 8 }, "name": "dispute", "title": "Collateral Disputes", "updated_at": "2019-08-03T12:30:00.123456Z" } }
Streams ermöglichen eine persistente, zustandsbehaftete Iteration durch Kommentare in einem Dataset, mit vorhergesagten Beschriftungen und allgemeinen Feldern, die mit einem fixierten Modell berechnet werden.
Sobald ein Stream erstellt wurde, können die und-Methoden verwendet werden, um Kommentare zu durchlaufen.
Name | Typ | Erforderlich | BESCHREIBUNG |
---|---|---|---|
name | string | ja | API-Name für den Stream, der in URLs verwendet wird. Muss innerhalb eines Datasets eindeutig sein und mit [A-Za-z0-9-_]{1,256} übereinstimmen.
|
title | string | nein | Einzeiliger, visuell lesbarer Titel für den Stream. |
description | string | nein | Eine längere Beschreibung des Streams. |
model | Modell | nein | Wenn angegeben, enthalten aus diesem Stream abgerufene Kommentare Vorhersagen aus einem angehefteten Modell. |
comment_filter | CommentFilter | nein | Wenn angegeben, werden Kommentare, die dem Filter nicht entsprechen, nicht zurückgegeben. Hier finden Sie Details dazu, wie sich der Kommentarfilter auf die vom Stream zurückgegebenen Ergebnisse auswirkt. |
Dabei hat
Model
das folgende Format:
Name | Typ | Erforderlich | BESCHREIBUNG |
---|---|---|---|
version | Integer | ja | Eine Modellversion, die über die Seite Modelle angeheftet wurde. |
label_thresholds | array<LabelThreshold> | nein | Wenn diese Option festgelegt ist, werden nur Werte zurückgegeben, die den angegebenen label_thresholds entsprechen. Wenn diese Option nicht festgelegt ist, werden alle Beschriftungen und alle Vorhersagewerte zurückgegeben.
|
Dabei hat
LabelThreshold
das folgende Format:
Name | Typ | Erforderlich | BESCHREIBUNG |
---|---|---|---|
name | array<string> | ja | Der Name der zurückzugebenden Bezeichnung, formatiert als Liste hierarchischer Bezeichnungen. Beispielsweise hat die Beschriftung "Some Label" das Format ["Some Label"] und die Beschriftung "Parent Label > Child Label" das Format ["Parent Label", "Child Label"] .
|
threshold | Nummer | ja | Der Konfidenz-Schwellenwert, der für die Bezeichnung verwendet werden soll (eine Zahl zwischen 0,0 und 1,0). Die Bezeichnung wird für einen Kommentar nur zurückgegeben, wenn die Vorhersage über diesem Schwellenwert liegt. |
Dabei hat
CommentFilter
das folgende Format:
Name | Typ | Erforderlich | BESCHREIBUNG |
---|---|---|---|
user_properties | UserPropertyFilter | nein | Ein Filter, der auf die Benutzereigenschaften eines Kommentars angewendet wird. Weitere Informationen zu Benutzereigenschaften finden Sie in der Kommentarreferenz. |
UserPropertyFilter
ist eine Zuordnung von Benutzereigenschaftsnamen, die gefiltert werden sollen. String-Eigenschaften können nach Werten in einem Satz gefiltert werden ({"one_of": ["val_1", "val_2"]}
). Zahleneigenschaften können entweder nach Werten in einem Satz ({"one_of": [123, 456]}
) oder nach einem Bereich ({"minimum": 123, "maximum": 456}
) gefiltert werden.