- Información general
- Proceso de Document Understanding
- Tutoriales de inicio rápido
- Componentes de marco
- Resumen de la clasificación de documentos
- Asistente para Configurar clasificadores de Clasificar ámbito de documento
- Clasificador de CapturaFlexible
- Clasificador inteligente de palabra clave
- Clasificador basado en palabras clave
- Clasificador de aprendizaje automático
- Actividades relacionadas con la clasificación de documentos
- Paquetes ML
- Información general
- Document Understanding - Paquete ML
- DocumentClassifier: paquete ML
- Paquetes ML con capacidades OCR
- 1040: paquete ML
- 4506T: paquete ML
- 990 - Paquete ML: vista previa
- ACORD125: paquete ML
- ACORD126 - Paquete ML
- ACORD131 - Paquete ML
- ACORD140 - Paquete ML
- ACORD25 - Paquete ML
- Extractos bancarios: paquete ML
- Conocimientos de embarque: paquete ML
- Certificado de incorporación: paquete ML
- Certificado de origen: paquete ML
- Cheques: paquete ML
- Certificado de producto secundario: paquete ML
- CMS1500 - Paquete ML
- Declaración de conformidad de la UE: Paquete ML
- Estados financieros: paquete ML
- FM1003: paquete ML
- I9 - Paquete ML
- Documentos de identidad: paquete ML
- Facturas: paquete ML
- FacturasAustralia: paquete ML
- FacturasChina - Paquete ML
- FacturasIndia - Paquete ML
- FacturasJapón - Paquete ML
- Envío de facturas: paquete ML
- Listas de embalaje: paquete ML
- Pasaportes: paquete ML
- Nóminas - - Paquete ML
- Órdenes de compra: paquete ML
- Recibos: paquete ML
- ConsejosDeRemesas: paquete ML
- Facturas de servicios públicos: paquete ML
- Títulos de vehículos: paquete ML
- W2 - Paquete ML
- W9 - Paquete ML
- Otros paquetes ML listos para usar
- Puntos finales públicos
- Requisitos de hardware
- Procesos
- Administrador de documentos
- Servicios de OCR
- Aprendizaje profundo
- Document Understanding implementado en Automation Suite
- Instalar y utilizar
- Primera experiencia de ejecución
- Implementar UiPathDocumentOCR
- Implementar un paquete ML listo para usar
- Paquetes sin conexión 2023.4.9
- Paquetes sin conexión 2023.4.8
- Paquetes sin conexión 2023.4.7
- Paquetes sin conexión 2023.4.6
- Paquetes sin conexión 2023.4.5
- Paquetes sin conexión 2023.4.4
- Paquetes sin conexión 2023.4.3
- Paquetes sin conexión 2023.4.2
- Paquetes sin conexión 2023.4.1
- Paquetes sin conexión 2023.4.0
- Utiliza Document Manager
- Utilizar el marco
- Document Understanding implementado en AI Center independiente
- Licencia
- Actividades
- Actividades.DeUipath
- UiPath.AbbyyEmbedded.Activities
- UiPath.DocumentProcessing.Contracts
- UiPath.DocumentUnderstanding.ML.Activities
- UiPath.DocumentUnderstanding.OCR.LocalServer.Activities
- UiPath.IntelligentOCR.Activities
- UiPath.OCR.Activities
- UiPath.OCR.Contracts
- UiPath.OmniPage.Activities
- UiPath.PDF.Activities
Utiliza Document Manager
En esta página explica cómo utilizar Document Manager para etiquetar un nuevo conjunto de datos y volver a entrenar un modelo ML.
Lanza la sesión de etiquetado de datos creada en Experiencia de la primera ejecución y ve a los ajustes para configurar el OCR.
Elige el OCR que pretendes utilizar en el menú desplegable Método OCR. Para UiPathDocumentOCR, pega la clave de licencia de Document UnderstandingTM (recupera la clave API de Document Understanding desde la página de Administración > Licencias) y luego pega la URL OCR que generaste al implementar UiPathDocumentOCR.
Configura el preetiquetado con los modelos que has implementado siguiendo las instrucciones aquí. Pega el punto final público del modelo de Habilidad ML y la clave de licencia de Document Understanding. A continuación, haz clic en Guardar.
Para obtener información más detallada, consulta la documentación aquí: Utilizar un esquema predefinido.
- Selecciona el botón Importar desde una sesión de Document Manager.
- Nombra el conjunto de datos y selecciona Explorar archivos para cargar.
- Selecciona el documento que deseas cargar.
- Haz clic en Sí.
Haz clic en para crear los campos que se van a extraer.
Puedes crear hasta 40 campos.
Para este ejercicio de validación, puedes crear algunos campos de factura comunes como fecha, nombre, número de factura y total. Asegúrate de cambiar el tipo de contenido según corresponda: fecha (fecha), nombre (cadena), número de factura (cadena) y total (número).
Ahora puedes empezar a etiquetar los documentos.
Haz clic en el botón Predecir en la parte superior para utilizar el modelo de factura base para predecir las etiquetas para los campos definidos y corregirla si la predicción es incorrecta.
d
para etiquetar la fecha en el siguiente ejemplo).
Utiliza la flecha de la parte superior para pasar al siguiente documento hasta que hayas terminado la validación de etiquetas de todas las facturas cargadas.
- Asegúrate de seleccionar el conjunto de datos correcto en el filtrado de conjuntos de datos y haz clic en el botón Exportar .
- Selecciona Exportar.
- Ve a Conjuntos de datos en el mismo proyecto de AI Center y podrás ver el conjunto de datos de entrenamiento exportado.
Entrenar un modelo personalizado en AI Center
- Ve a Procesos > Crear nuevo. Selecciona el tipo de ejecución de evaluación, elige el paquete de modelo y el conjunto de datos de entrada.
- Selecciona la subcarpeta bajo Exportar como conjunto de datos de entrada.
- Selecciona Crear para iniciar el proceso. El proceso puede tardar entre 1 y 2 horas en ejecutarse en máquinas con CPU.
Ve a la pestaña Habilidades ML y crea una nueva Habilidad ML.
Elige el mismo paquete de modelo de factura anteriormente creado. Como hemos reentrenado el modelo, ahora hay una nueva versión inferior del paquete (1 frente a 0). Asegúrate de seleccionar la más reciente.
Una vez creada la habilidad ML, ve a Modificar implementación actual para hacerla pública. Activa el selector y haz clic en Confirmar.
Copia la URL de la Habilidad ML pública para su uso posterior.
¡Enhorabuena! Ya has reentrenado un modelo Factura con tu propio conjunto de datos y creado el punto final para acceder al modelo.