communications-mining
latest
false
- Documentos de la API
- Introducción
- Uso de la API
- Tutorial de la API
- Resumen
- Fuentes
- Conjuntos de datos
- Comentarios
- Archivos adjuntos
- Predictions
- Crear una transmisión
- Actualizar una transmisión
- Obtener una transmisión por nombre
- Obtener todas las transmisiones
- Eliminar una transmisión
- Obtener resultados de la transmisión
- Obtener comentarios de una transmisión (heredado)
- Avanzar una transmisión
- Restablecer una transmisión
- Etiquetar una excepción
- Desetiquetar una excepción
- Eventos de auditoría
- Obtener todos los usuarios
- CLI
- Guías de integración
- Blog
- Cómo aprenden las máquinas a entender palabras: una guía para las incrustaciones en PNL
- Aprendizaje basado en solicitudes con Transformers
- Efficient Transformers II: destilación de conocimientos y ajuste
- Transformadores eficientes I: mecanismos de atención
- Modelado de intenciones jerárquico profundo no supervisado: obtener valor sin datos de entrenamiento
- Corrección del sesgo de anotación con Communications Mining
- Aprendizaje activo: mejores modelos ML en menos tiempo
- Todo está en los números: evaluar el rendimiento del modelo con métricas
- Por qué es importante la validación del modelo
- Comparación de Communications Mining y Google AutoML para la inteligencia de datos conversacional
Etiquetar una excepción
Importante :
Este contenido se ha traducido mediante traducción automática.
Guía para desarrolladores de Communications Mining
Last updated 3 de oct. de 2024
Etiquetar una excepción
/api/v1/datasets/<project>/<dataset_name>/streams/<stream_name>/exceptions
/api/v1/datasets/<project>/<dataset_name>/streams/<stream_name>/exceptions
- Bash
curl -X PUT 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/exceptions' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "exceptions": [ { "metadata": { "type": "No Prediction" }, "uid": "18ba5ce699f8da1f.abcdef0123456789" }, { "metadata": { "type": "Wrong Prediction" }, "uid": "18ba5ce699f8da1f.0123456789abcdef" } ] }'
curl -X PUT 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/exceptions' \ -H "Authorization: Bearer $REINFER_TOKEN" \ -H "Content-Type: application/json" \ -d '{ "exceptions": [ { "metadata": { "type": "No Prediction" }, "uid": "18ba5ce699f8da1f.abcdef0123456789" }, { "metadata": { "type": "Wrong Prediction" }, "uid": "18ba5ce699f8da1f.0123456789abcdef" } ] }' - Nodo
const request = require("request"); request.put( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/exceptions", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { exceptions: [ { metadata: { type: "No Prediction" }, uid: "18ba5ce699f8da1f.abcdef0123456789", }, { metadata: { type: "Wrong Prediction" }, uid: "18ba5ce699f8da1f.0123456789abcdef", }, ], }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } );
const request = require("request"); request.put( { url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/exceptions", headers: { Authorization: "Bearer " + process.env.REINFER_TOKEN, }, json: true, body: { exceptions: [ { metadata: { type: "No Prediction" }, uid: "18ba5ce699f8da1f.abcdef0123456789", }, { metadata: { type: "Wrong Prediction" }, uid: "18ba5ce699f8da1f.0123456789abcdef", }, ], }, }, function (error, response, json) { // digest response console.log(JSON.stringify(json, null, 2)); } ); - Python
import json import os import requests response = requests.put( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/exceptions", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "exceptions": [ { "uid": "18ba5ce699f8da1f.abcdef0123456789", "metadata": {"type": "No Prediction"}, }, { "uid": "18ba5ce699f8da1f.0123456789abcdef", "metadata": {"type": "Wrong Prediction"}, }, ] }, ) print(json.dumps(response.json(), indent=2, sort_keys=True))
import json import os import requests response = requests.put( "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/streams/dispute/exceptions", headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]}, json={ "exceptions": [ { "uid": "18ba5ce699f8da1f.abcdef0123456789", "metadata": {"type": "No Prediction"}, }, { "uid": "18ba5ce699f8da1f.0123456789abcdef", "metadata": {"type": "Wrong Prediction"}, }, ] }, ) print(json.dumps(response.json(), indent=2, sort_keys=True)) - Respuesta
{ "status": "ok" }
{ "status": "ok" }
Este punto final te permite etiquetar comentarios como excepciones en la plataforma, de modo que un entrenador de modelos pueda revisarlos y etiquetarlos para mejorar el modelo. Recomendamos etiquetar los comentarios para los que el modelo no devolvió predicciones y los comentarios para los que el modelo devolvió predicciones incorrectas. (Para obtener ayuda con el diseño del flujo de gestión de excepciones, consulta la Guía de integración).
Nombre | Tipo | Obligatorio | Descripción |
---|---|---|---|
exceptions | array<Exception> | Sí | Una lista de excepciones. |
Donde
Exception
tiene el siguiente formato:
Nombre | Tipo | Obligatorio | Descripción |
---|---|---|---|
uid | String | Sí | El uid del comentario que debe etiquetarse como excepción.
|
metadata | Metadatos | Sí | Un objeto que contiene metadatos de excepción. |
Donde
Metadata
tiene el siguiente formato:
Nombre | Tipo | Obligatorio | Descripción |
---|---|---|---|
type | String | Sí | El tipo de excepción estará disponible como propiedad de filtro en la interfaz de usuario de Communications Mining. El valor puede ser una cadena arbitraria. Elija una cadena corta y fácil de entender como "Sin predicción" y "Predicción incorrecta". |