communications-mining
latest
false
重要 :
请注意,此内容已使用机器翻译进行了本地化。
Communications Mining 开发者指南
Last updated 2024年10月3日

预测

获取已固定模型的预测

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict

所需权限:查看标签、查看来源

重要提示:

可计费操作

我们将按请求正文中提供的每条注释向您收取 1 个 AI Unit。

  • 重击
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "messages": [
            {
              "body": {
                "text": "Hi Bob,\n\nCould you send me the figures for today?"
              },
              "from": "alice@company.com",
              "sent_at": "2020-01-09T16:34:45Z",
              "signature": {
                "text": "Thanks,\nAlice"
              },
              "subject": {
                "text": "Figures Request"
              },
              "to": [
                "bob@organisation.org"
              ]
            }
          ],
          "timestamp": "2013-09-12T20:01:20.000000+00:00",
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "messages": [
            {
              "body": {
                "text": "Alice,\n\nHere are the figures for today."
              },
              "from": "bob@organisation.org",
              "sent_at": "2020-01-09T16:44:45Z",
              "signature": {
                "text": "Regards,\nBob"
              },
              "subject": {
                "text": "Re: Figures Request"
              },
              "to": [
                "alice@company.com"
              ]
            }
          ],
          "timestamp": "2011-12-12T10:04:30.000000+00:00",
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "threshold": 0.25
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "messages": [
            {
              "body": {
                "text": "Hi Bob,\n\nCould you send me the figures for today?"
              },
              "from": "alice@company.com",
              "sent_at": "2020-01-09T16:34:45Z",
              "signature": {
                "text": "Thanks,\nAlice"
              },
              "subject": {
                "text": "Figures Request"
              },
              "to": [
                "bob@organisation.org"
              ]
            }
          ],
          "timestamp": "2013-09-12T20:01:20.000000+00:00",
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "messages": [
            {
              "body": {
                "text": "Alice,\n\nHere are the figures for today."
              },
              "from": "bob@organisation.org",
              "sent_at": "2020-01-09T16:44:45Z",
              "signature": {
                "text": "Regards,\nBob"
              },
              "subject": {
                "text": "Re: Figures Request"
              },
              "to": [
                "alice@company.com"
              ]
            }
          ],
          "timestamp": "2011-12-12T10:04:30.000000+00:00",
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "threshold": 0.25
    }'
    
  • 节点
    const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              messages: [
                {
                  body: {
                    text: "Hi Bob,\n\nCould you send me the figures for today?",
                  },
                  from: "alice@company.com",
                  sent_at: "2020-01-09T16:34:45Z",
                  signature: { text: "Thanks,\nAlice" },
                  subject: { text: "Figures Request" },
                  to: ["bob@organisation.org"],
                },
              ],
              timestamp: "2013-09-12T20:01:20.000000+00:00",
              user_properties: { "string:City": "London" },
            },
            {
              messages: [
                {
                  body: { text: "Alice,\n\nHere are the figures for today." },
                  from: "bob@organisation.org",
                  sent_at: "2020-01-09T16:44:45Z",
                  signature: { text: "Regards,\nBob" },
                  subject: { text: "Re: Figures Request" },
                  to: ["alice@company.com"],
                },
              ],
              timestamp: "2011-12-12T10:04:30.000000+00:00",
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          threshold: 0.25,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              messages: [
                {
                  body: {
                    text: "Hi Bob,\n\nCould you send me the figures for today?",
                  },
                  from: "alice@company.com",
                  sent_at: "2020-01-09T16:34:45Z",
                  signature: { text: "Thanks,\nAlice" },
                  subject: { text: "Figures Request" },
                  to: ["bob@organisation.org"],
                },
              ],
              timestamp: "2013-09-12T20:01:20.000000+00:00",
              user_properties: { "string:City": "London" },
            },
            {
              messages: [
                {
                  body: { text: "Alice,\n\nHere are the figures for today." },
                  from: "bob@organisation.org",
                  sent_at: "2020-01-09T16:44:45Z",
                  signature: { text: "Regards,\nBob" },
                  subject: { text: "Re: Figures Request" },
                  to: ["alice@company.com"],
                },
              ],
              timestamp: "2011-12-12T10:04:30.000000+00:00",
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          threshold: 0.25,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "documents": [
                {
                    "messages": [
                        {
                            "from": "alice@company.com",
                            "to": ["bob@organisation.org"],
                            "sent_at": "2020-01-09T16:34:45Z",
                            "body": {
                                "text": "Hi Bob,\n\nCould you send me the figures for today?"
                            },
                            "subject": {"text": "Figures Request"},
                            "signature": {"text": "Thanks,\nAlice"},
                        }
                    ],
                    "timestamp": "2013-09-12T20:01:20.000000+00:00",
                    "user_properties": {"string:City": "London"},
                },
                {
                    "messages": [
                        {
                            "from": "bob@organisation.org",
                            "to": ["alice@company.com"],
                            "sent_at": "2020-01-09T16:44:45Z",
                            "body": {
                                "text": "Alice,\n\nHere are the figures for today."
                            },
                            "subject": {"text": "Re: Figures Request"},
                            "signature": {"text": "Regards,\nBob"},
                        }
                    ],
                    "timestamp": "2011-12-12T10:04:30.000000+00:00",
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "documents": [
                {
                    "messages": [
                        {
                            "from": "alice@company.com",
                            "to": ["bob@organisation.org"],
                            "sent_at": "2020-01-09T16:34:45Z",
                            "body": {
                                "text": "Hi Bob,\n\nCould you send me the figures for today?"
                            },
                            "subject": {"text": "Figures Request"},
                            "signature": {"text": "Thanks,\nAlice"},
                        }
                    ],
                    "timestamp": "2013-09-12T20:01:20.000000+00:00",
                    "user_properties": {"string:City": "London"},
                },
                {
                    "messages": [
                        {
                            "from": "bob@organisation.org",
                            "to": ["alice@company.com"],
                            "sent_at": "2020-01-09T16:44:45Z",
                            "body": {
                                "text": "Alice,\n\nHere are the figures for today."
                            },
                            "subject": {"text": "Re: Figures Request"},
                            "signature": {"text": "Regards,\nBob"},
                        }
                    ],
                    "timestamp": "2011-12-12T10:04:30.000000+00:00",
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • 响应
    {
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }{
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }
您必须在请求中提供要查询以进行预测的模型版本。 您可以使用整数版本号或者特殊值livestaging来查询当前的“实时”或“临时”模型版本。
请求格式
名称类型必填说明
documentsarray<Comment>最多包含 4096 个文档的批次,其格式请参阅注释参考。 对于每个文档,较大批处理比较小批处理速度更快。
threshold数字用于筛选标签结果的可信度阈值。 介于1.00.0之间的数字。 0.0将包含所有结果。 设置为"auto"可使用自动阈值。 如果未设置,则将使用默认阈值0.25
labelsarray<Label>要返回的请求标签列表,以及特定于标签的阈值(可选)。

其中Label具有以下格式:

名称类型必填说明
namearray<string>要返回的标签名称,格式为层次结构标签列表。 例如,标签"Parent Label > Child Label"将采用["Parent Label", "Child Label"]格式。
threshold数字用于标签的置信度阈值。 如果未指定,将默认为在顶层指定的阈值。
响应格式
名称类型说明
status字符串ok 如果请求成功,则返回error (如果发生错误)。 请参阅概述,详细了解错误响应。
predictionsarray<array<Label>>array<Label>列表,其顺序与请求中的注释相同,其中每个Label具有此处所述的格式。
entitiesarray<array<Entity>>array<Entity>列表,其顺序与请求中的注释相同,其中每个Entity具有此处所述的格式。
label_propertiesarray<LabelProperty>包含此注释的预测标签属性的数组,其中的每个LabelProperty具有此处所述的格式。
model模型用于进行预测的模型的相关信息,采用此处描述的格式。

获取原始电子邮件的已固定模型的预测

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails

所需权限:查看标签、查看来源

重要提示:

可计费操作

对于请求正文中提供的每封原始电子邮件,您需要支付 1 个 AI Unit。

  • 重击
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "raw_email": {
            "body": {
              "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
            },
            "headers": {
              "parsed": {
                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                "From": "alice@company.com",
                "Message-ID": "abcdef@company.com",
                "References": "<01234@company.com> <56789@company.com>",
                "Subject": "Figures Request",
                "To": "bob@organisation.org"
              }
            }
          },
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "raw_email": {
            "body": {
              "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
            },
            "headers": {
              "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
            }
          },
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "include_comments": false,
      "threshold": 0.25,
      "transform_tag": "generic.0.CONVKER5"
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "raw_email": {
            "body": {
              "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
            },
            "headers": {
              "parsed": {
                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                "From": "alice@company.com",
                "Message-ID": "abcdef@company.com",
                "References": "<01234@company.com> <56789@company.com>",
                "Subject": "Figures Request",
                "To": "bob@organisation.org"
              }
            }
          },
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "raw_email": {
            "body": {
              "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
            },
            "headers": {
              "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
            }
          },
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "include_comments": false,
      "threshold": 0.25,
      "transform_tag": "generic.0.CONVKER5"
    }'
    
  • 节点
    const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              raw_email: {
                body: {
                  plain:
                    "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice",
                },
                headers: {
                  parsed: {
                    Date: "Thu, 09 Jan 2020 16:34:45 +0000",
                    From: "alice@company.com",
                    "Message-ID": "abcdef@company.com",
                    References: "<01234@company.com> <56789@company.com>",
                    Subject: "Figures Request",
                    To: "bob@organisation.org",
                  },
                },
              },
              user_properties: { "string:City": "London" },
            },
            {
              raw_email: {
                body: {
                  html: "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>",
                },
                headers: {
                  raw: "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com",
                },
              },
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          include_comments: false,
          threshold: 0.25,
          transform_tag: "generic.0.CONVKER5",
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              raw_email: {
                body: {
                  plain:
                    "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice",
                },
                headers: {
                  parsed: {
                    Date: "Thu, 09 Jan 2020 16:34:45 +0000",
                    From: "alice@company.com",
                    "Message-ID": "abcdef@company.com",
                    References: "<01234@company.com> <56789@company.com>",
                    Subject: "Figures Request",
                    To: "bob@organisation.org",
                  },
                },
              },
              user_properties: { "string:City": "London" },
            },
            {
              raw_email: {
                body: {
                  html: "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>",
                },
                headers: {
                  raw: "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com",
                },
              },
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          include_comments: false,
          threshold: 0.25,
          transform_tag: "generic.0.CONVKER5",
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "transform_tag": "generic.0.CONVKER5",
            "documents": [
                {
                    "raw_email": {
                        "headers": {
                            "parsed": {
                                "Message-ID": "abcdef@company.com",
                                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                                "Subject": "Figures Request",
                                "From": "alice@company.com",
                                "To": "bob@organisation.org",
                                "References": "<01234@company.com> <56789@company.com>",
                            }
                        },
                        "body": {
                            "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
                        },
                    },
                    "user_properties": {"string:City": "London"},
                },
                {
                    "raw_email": {
                        "headers": {
                            "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
                        },
                        "body": {
                            "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
                        },
                    },
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
            "include_comments": False,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "transform_tag": "generic.0.CONVKER5",
            "documents": [
                {
                    "raw_email": {
                        "headers": {
                            "parsed": {
                                "Message-ID": "abcdef@company.com",
                                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                                "Subject": "Figures Request",
                                "From": "alice@company.com",
                                "To": "bob@organisation.org",
                                "References": "<01234@company.com> <56789@company.com>",
                            }
                        },
                        "body": {
                            "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
                        },
                    },
                    "user_properties": {"string:City": "London"},
                },
                {
                    "raw_email": {
                        "headers": {
                            "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
                        },
                        "body": {
                            "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
                        },
                    },
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
            "include_comments": False,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • 响应
    {
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }{
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }
您必须在请求中提供要查询以进行预测的模型版本。 您可以使用整数版本号或者特殊值livestaging来查询当前的“实时”或“临时”模型版本。
请求格式
名称类型必填说明
transform_tag字符串指定应如何处理原始数据的标签。
documentsarray<Document>一批至多包含 4096 个文档,其格式如下所述。 对于每个文档,较大批处理比较小批处理速度更快。
threshold数字用于筛选标签结果的可信度阈值。 介于1.00.0之间的数字。 0.0将包含所有结果。 设置为"auto"可使用自动阈值。 如果未设置,则将使用默认阈值0.25
labelsarray<Label>要返回的请求标签列表,以及特定于标签的阈值(可选)。
include_commentsboolean如果设置为true ,则从电子邮件中解析的注释将在响应正文中返回。
其中Document具有以下格式:
名称类型必填说明
raw_emailRawEmail此处描述的格式通过电子邮件发送数据。
user_propertiesmap<string, string | number>适用于注释的任何用户定义的元数据。 此处介绍了格式。
注意:某些用户属性是根据电子邮件内容生成的。 如果这些属性与上传的用户属性冲突,则请求将失败,并422 Unprocessable Entity
其中Label具有以下格式:
名称类型必填说明
namearray<string>要返回的标签名称,格式为层次结构标签列表。 例如,标签"Parent Label > Child Label"将采用["Parent Label", "Child Label"]格式。
threshold数字用于标签的置信度阈值。 如果未指定,将默认为在顶层指定的阈值。
响应格式
名称类型说明
status字符串ok 如果请求成功,则返回error (如果发生错误)。 请参阅概述,详细了解错误响应。
commentsarray<Comment>从上传的原始电子邮件中解析的注释列表,其格式请参阅注释参考。 仅在请求中设置了include_comments时返回。
predictionsarray<array<Label>>array<Label>列表,其顺序与请求中的注释相同,其中每个Label具有此处所述的格式。
entitiesarray<array<Entity>>array<Entity>列表,其顺序与请求中的注释相同,其中每个Entity具有此处所述的格式。
label_propertiesarray<LabelProperty>包含此注释的预测标签属性的数组,其中的每个LabelProperty具有此处所述的格式。
model模型用于进行预测的模型的相关信息,采用此处描述的格式。
备注:

对于大型请求,此端点可能需要更长时间才能响应。 您应该增加客户端超时时间。

按注释 ID 获取已固定模型的预测

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments

所需权限:查看标签、查看来源

  • 重击
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "threshold": 0.25,
      "uids": [
        "18ba5ce699f8da1f.0001",
        "18ba5ce699f8da1f.0002"
      ]
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "threshold": 0.25,
      "uids": [
        "18ba5ce699f8da1f.0001",
        "18ba5ce699f8da1f.0002"
      ]
    }'
    
  • 节点
    const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          threshold: 0.25,
          uids: ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          threshold: 0.25,
          uids: ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "uids": ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "uids": ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • 响应
    {
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        {
          "entities": [
            {
              "capture_ids": [],
              "formatted_value": "Bob",
              "id": "76aebf2646577a1d",
              "kind": "person",
              "name": "person",
              "probability": null,
              "span": {
                "char_end": 6,
                "char_start": 3,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 12,
                "utf16_byte_start": 6
              }
            },
            {
              "capture_ids": [],
              "formatted_value": "2020-01-09 00:00 UTC",
              "id": "20beddf4c5f5bb61",
              "kind": "date",
              "name": "date",
              "probability": null,
              "span": {
                "char_end": 48,
                "char_start": 43,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 96,
                "utf16_byte_start": 86
              }
            }
          ],
          "labels": [
            {
              "name": ["Some Label"],
              "probability": 0.8896465003490448
            },
            {
              "name": ["Parent Label", "Child Label"],
              "probability": 0.26687008142471313,
              "sentiment": 0.8762539502232571
            }
          ],
          "uid": "18ba5ce699f8da1f.0001"
        },
        {
          "entities": [],
          "labels": [
            {
              "name": ["Other Label"],
              "probability": 0.6406207121908665
            }
          ],
          "uid": "18ba5ce699f8da1f.0002"
        }
      ],
      "status": "ok"
    }{
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        {
          "entities": [
            {
              "capture_ids": [],
              "formatted_value": "Bob",
              "id": "76aebf2646577a1d",
              "kind": "person",
              "name": "person",
              "probability": null,
              "span": {
                "char_end": 6,
                "char_start": 3,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 12,
                "utf16_byte_start": 6
              }
            },
            {
              "capture_ids": [],
              "formatted_value": "2020-01-09 00:00 UTC",
              "id": "20beddf4c5f5bb61",
              "kind": "date",
              "name": "date",
              "probability": null,
              "span": {
                "char_end": 48,
                "char_start": 43,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 96,
                "utf16_byte_start": 86
              }
            }
          ],
          "labels": [
            {
              "name": ["Some Label"],
              "probability": 0.8896465003490448
            },
            {
              "name": ["Parent Label", "Child Label"],
              "probability": 0.26687008142471313,
              "sentiment": 0.8762539502232571
            }
          ],
          "uid": "18ba5ce699f8da1f.0001"
        },
        {
          "entities": [],
          "labels": [
            {
              "name": ["Other Label"],
              "probability": 0.6406207121908665
            }
          ],
          "uid": "18ba5ce699f8da1f.0002"
        }
      ],
      "status": "ok"
    }
您必须在请求中提供要查询以进行预测的模型版本。 您可以使用整数版本号或者特殊值livestaging来查询当前的“实时”或“临时”模型版本。
请求格式
名称类型必填说明
uidsarray<string>至多包含 4096 个source_idcomment_id组合的列表,格式为source_id.comment_id 。 源不必属于当前数据集,因此您可以请求预测不同数据集(或无数据集)中来源的注释。 较大的列表(每个注释)比较小的列表更快。
threshold数字用于筛选标签结果的可信度阈值。 介于1.00.0之间的数字。 0.0将包含所有结果。 设置为"auto"可使用自动阈值。 如果未设置,则将使用默认阈值0.25
labelsarray<Label>要返回的请求标签列表,以及特定于标签的阈值(可选)。
其中Label具有以下格式:
名称类型必填说明
namearray<string>要返回的标签名称,格式为层次结构标签列表。 例如,标签"Parent Label > Child Label"将采用["Parent Label", "Child Label"]格式。
threshold数字用于标签的置信度阈值。 如果未指定,将默认为在顶层指定的阈值。
响应格式
名称类型说明
status字符串ok 如果请求成功,则返回error (如果发生错误)。 请参阅概述,详细了解错误响应。
predictionsarray<Prediction>采用下文所述格式的预测列表。
model模型用于进行预测的模型的相关信息,采用此处描述的格式。
其中Prediction具有以下格式:
名称类型说明
uid字符串source_idcomment_id的组合,格式为source_id.comment_id
labelsarray<Label>包含此注释的预测标签的数组,其中Label的格式请参见此处所述。
entitiesarray<Entity>包含此注释的预测实体的数组,其中Entity的格式请参见此处所述。
label_propertiesarray<LabelProperty>包含此注释的预测标签属性的数组,其中的每个LabelProperty具有此处所述的格式。
注意:对于大型请求,此端点可能需要更长时间才能响应。 您应该增加客户端超时时间。

获取模型验证统计信息

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/validation

所需权限:查看标签、查看来源

  • 重击
    curl -X GET 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation' \
        -H "Authorization: Bearer $REINFER_TOKEN"curl -X GET 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation' \
        -H "Authorization: Bearer $REINFER_TOKEN"
    
  • 节点
    const request = require("request");
    
    request.get(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.get(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.get(
        "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.get(
        "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • 响应
    {
      "status": "ok",
      "validation": {
        "coverage": 0.9119927883148193,
        "dataset_quality": "good",
        "labels": [
          {
            "name": "Notification",
            "parts": ["Notification"]
          },
          {
            "name": "Notification > Out of Office",
            "parts": ["Notification", "Out of Office"]
          },
          {
            "name": "Notification > Public Holiday",
            "parts": ["Notification", "Public Holiday"]
          }
        ],
        "mean_average_precision_safe": 0.83,
        "num_amber_labels": 1,
        "num_labels": 3,
        "num_red_labels": 1,
        "num_reviewed_comments": 10251,
        "version": 5
      }
    }{
      "status": "ok",
      "validation": {
        "coverage": 0.9119927883148193,
        "dataset_quality": "good",
        "labels": [
          {
            "name": "Notification",
            "parts": ["Notification"]
          },
          {
            "name": "Notification > Out of Office",
            "parts": ["Notification", "Out of Office"]
          },
          {
            "name": "Notification > Public Holiday",
            "parts": ["Notification", "Public Holiday"]
          }
        ],
        "mean_average_precision_safe": 0.83,
        "num_amber_labels": 1,
        "num_labels": 3,
        "num_red_labels": 1,
        "num_reviewed_comments": 10251,
        "version": 5
      }
    }
此路由会返回有关模型执行情况的统计信息。 您可以在“验证” 页面中查看相同的统计信息。 可以使用整数version数字请求模型的统计信息。 您可以使用特殊值livestaging检索当前实时或临时模型版本的统计信息,或使用特殊值latest检索最近可用的模型版本。
尽管此端点同时接受固定和未固定的模型版本,但我们建议查询已固定的模型版本或特殊值latest ,因为不保证可用于未固定的模型版本。

响应validation对象包含以下字段:
名称类型说明
mean_average_precision_safefloat平均精度分数(在0.01.0之间)。 如果 MAP 不可用,则此字段将为null
num_labels数字分类中的标签数量(在固定模型版本时)。
labelsarray<Label>分类中的标签列表(在固定模型版本时)。 请注意,如响应示例所示,除了作为子标签的一部分返回外,父标签还会作为单独的标签返回。
num_reviewed_comments数字数据集中已审核的注释数量(在模型版本固定时)。
version数字模型版本。
num_amber_labels数字处于黄色警告状态的标签数量。
num_red_labels数字处于红色警告状态的标签数量。
dataset_score数字数据集总分,介于0100之间。
dataset_quality字符串"poor""average""good""excellent"中的一个,表示数据集的整体质量排名。 如果数据不足,可以是null
balancefloat衡量已审核注释与未审核注释之间相似性的指标(介于0.01.0之间)。 如果数据不足,可以是null
balance_quality字符串"poor""average""good""excellent"中的一个,表示天平质量排名。 如果数据不足,可以是null
coveragefloat数据集中标签覆盖率的分数值(介于0.01.0之间)。 如果数据不足,可以是null
coverage_quality字符串"poor""average""good""excellent"中的一个,表示覆盖质量排名。 如果数据不足,可以是null
all_labels_quality字符串"poor""average""good""excellent"之一,表示所有标签质量排名。 如果数据不足,可以是null
underperforming_labels_quality字符串"poor""average""good""excellent"之一,表示表现不佳的标签质量排名。 如果数据不足,可以是null
其中Label具有以下格式:
名称类型说明
name字符串标签名称,字符串格式。
partsarray<string>标签的名称,格式为层次结构标签列表。 例如,标签"Parent Label > Child Label"的格式为["Parent Label", "Child Label"]

此页面有帮助吗?

获取您需要的帮助
了解 RPA - 自动化课程
UiPath Community 论坛
Uipath Logo White
信任与安全
© 2005-2024 UiPath。保留所有权利。