communications-mining
latest
false
Importante :
Este conteúdo foi traduzido com auxílio de tradução automática.
UiPath logo, featuring letters U and I in white
Guia do desenvolvedor do Communications Mining
Last updated 19 de nov de 2024

Predictions

Obter previsões para um modelo fixado

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict

Permissões necessárias: Exibir rótulos, Exibir origens

Importante:

Operação Faturável

Você receberá a cobrança de 1 AI Unit por comentário fornecido no corpo da solicitação.

  • Bash
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "messages": [
            {
              "body": {
                "text": "Hi Bob,\n\nCould you send me the figures for today?"
              },
              "from": "alice@company.com",
              "sent_at": "2020-01-09T16:34:45Z",
              "signature": {
                "text": "Thanks,\nAlice"
              },
              "subject": {
                "text": "Figures Request"
              },
              "to": [
                "bob@organisation.org"
              ]
            }
          ],
          "timestamp": "2013-09-12T20:01:20.000000+00:00",
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "messages": [
            {
              "body": {
                "text": "Alice,\n\nHere are the figures for today."
              },
              "from": "bob@organisation.org",
              "sent_at": "2020-01-09T16:44:45Z",
              "signature": {
                "text": "Regards,\nBob"
              },
              "subject": {
                "text": "Re: Figures Request"
              },
              "to": [
                "alice@company.com"
              ]
            }
          ],
          "timestamp": "2011-12-12T10:04:30.000000+00:00",
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "threshold": 0.25
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "messages": [
            {
              "body": {
                "text": "Hi Bob,\n\nCould you send me the figures for today?"
              },
              "from": "alice@company.com",
              "sent_at": "2020-01-09T16:34:45Z",
              "signature": {
                "text": "Thanks,\nAlice"
              },
              "subject": {
                "text": "Figures Request"
              },
              "to": [
                "bob@organisation.org"
              ]
            }
          ],
          "timestamp": "2013-09-12T20:01:20.000000+00:00",
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "messages": [
            {
              "body": {
                "text": "Alice,\n\nHere are the figures for today."
              },
              "from": "bob@organisation.org",
              "sent_at": "2020-01-09T16:44:45Z",
              "signature": {
                "text": "Regards,\nBob"
              },
              "subject": {
                "text": "Re: Figures Request"
              },
              "to": [
                "alice@company.com"
              ]
            }
          ],
          "timestamp": "2011-12-12T10:04:30.000000+00:00",
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "threshold": 0.25
    }'
    
  • const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              messages: [
                {
                  body: {
                    text: "Hi Bob,\n\nCould you send me the figures for today?",
                  },
                  from: "alice@company.com",
                  sent_at: "2020-01-09T16:34:45Z",
                  signature: { text: "Thanks,\nAlice" },
                  subject: { text: "Figures Request" },
                  to: ["bob@organisation.org"],
                },
              ],
              timestamp: "2013-09-12T20:01:20.000000+00:00",
              user_properties: { "string:City": "London" },
            },
            {
              messages: [
                {
                  body: { text: "Alice,\n\nHere are the figures for today." },
                  from: "bob@organisation.org",
                  sent_at: "2020-01-09T16:44:45Z",
                  signature: { text: "Regards,\nBob" },
                  subject: { text: "Re: Figures Request" },
                  to: ["alice@company.com"],
                },
              ],
              timestamp: "2011-12-12T10:04:30.000000+00:00",
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          threshold: 0.25,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              messages: [
                {
                  body: {
                    text: "Hi Bob,\n\nCould you send me the figures for today?",
                  },
                  from: "alice@company.com",
                  sent_at: "2020-01-09T16:34:45Z",
                  signature: { text: "Thanks,\nAlice" },
                  subject: { text: "Figures Request" },
                  to: ["bob@organisation.org"],
                },
              ],
              timestamp: "2013-09-12T20:01:20.000000+00:00",
              user_properties: { "string:City": "London" },
            },
            {
              messages: [
                {
                  body: { text: "Alice,\n\nHere are the figures for today." },
                  from: "bob@organisation.org",
                  sent_at: "2020-01-09T16:44:45Z",
                  signature: { text: "Regards,\nBob" },
                  subject: { text: "Re: Figures Request" },
                  to: ["alice@company.com"],
                },
              ],
              timestamp: "2011-12-12T10:04:30.000000+00:00",
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          threshold: 0.25,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "documents": [
                {
                    "messages": [
                        {
                            "from": "alice@company.com",
                            "to": ["bob@organisation.org"],
                            "sent_at": "2020-01-09T16:34:45Z",
                            "body": {
                                "text": "Hi Bob,\n\nCould you send me the figures for today?"
                            },
                            "subject": {"text": "Figures Request"},
                            "signature": {"text": "Thanks,\nAlice"},
                        }
                    ],
                    "timestamp": "2013-09-12T20:01:20.000000+00:00",
                    "user_properties": {"string:City": "London"},
                },
                {
                    "messages": [
                        {
                            "from": "bob@organisation.org",
                            "to": ["alice@company.com"],
                            "sent_at": "2020-01-09T16:44:45Z",
                            "body": {
                                "text": "Alice,\n\nHere are the figures for today."
                            },
                            "subject": {"text": "Re: Figures Request"},
                            "signature": {"text": "Regards,\nBob"},
                        }
                    ],
                    "timestamp": "2011-12-12T10:04:30.000000+00:00",
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "documents": [
                {
                    "messages": [
                        {
                            "from": "alice@company.com",
                            "to": ["bob@organisation.org"],
                            "sent_at": "2020-01-09T16:34:45Z",
                            "body": {
                                "text": "Hi Bob,\n\nCould you send me the figures for today?"
                            },
                            "subject": {"text": "Figures Request"},
                            "signature": {"text": "Thanks,\nAlice"},
                        }
                    ],
                    "timestamp": "2013-09-12T20:01:20.000000+00:00",
                    "user_properties": {"string:City": "London"},
                },
                {
                    "messages": [
                        {
                            "from": "bob@organisation.org",
                            "to": ["alice@company.com"],
                            "sent_at": "2020-01-09T16:44:45Z",
                            "body": {
                                "text": "Alice,\n\nHere are the figures for today."
                            },
                            "subject": {"text": "Re: Figures Request"},
                            "signature": {"text": "Regards,\nBob"},
                        }
                    ],
                    "timestamp": "2011-12-12T10:04:30.000000+00:00",
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • Resposta
    {
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }{
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }
Você deve fornecer a versão do modelo que deseja consultar para previsões na solicitação. Você pode usar o número inteiro da versão ou os valores especiais live ou staging para consultar a versão atual do modelo Live ou Staging.
Formato de solicitação
NomeTipoRequiredDescrição
documentsarray<Comment>simA batch of maximum 4096 documents, in the format described in Comment Reference. Larger batches are faster (per document) than smaller ones.
thresholdNúmeronãoO limite de confiança para filtrar os resultados do rótulo. Um número entre 1.0 e 0.0. 0.0 incluirá todos os resultados. Defina como "auto" para usar limites automáticos. Se não estiver definido, o limite padrão de 0.25 será usado.
labelsarray<Label>nãoUma lista dos rótulos solicitados a serem retornados com a opção de limites específicos de rótulos.

Onde Label tem o seguinte formato:

NomeTipoRequiredDescrição
namearray<string>simO nome do rótulo a ser retornado, formatado como uma lista de rótulos hierárquicos. Por exemplo, o rótulo "Parent Label > Child Label" terá o formato ["Parent Label", "Child Label"].
thresholdNúmeronãoO limite de confiança a ser usado para o rótulo. Se não for especificado, o padrão será o limite especificado no nível superior.
Formato da Resposta
NomeTipoDescrição
statusStringok if the request is successful, or error in case of an error. See Overview to learn more about error responses.
predictionsarray<array<Label>>Uma lista de array<Label> na mesma ordem que os comentários na solicitação, em que cada Label tem o formato descrito aqui.
entitiesarray<array<Entity>>Uma lista de array<Entity> na mesma ordem que os comentários na solicitação, em que cada Entity tem o formato descrito aqui.
label_propertiesarray<LabelProperty>Uma matriz que contém as propriedades de rótulo prevista para este comentário, em que cada LabelProperty tem o formato descrito aqui.
modelModeloInformações sobre o modelo que foi usado para fazer as previsões, no formato descrito aqui.

Get predictions for latest model version

To get predictions from the latest available model version for a dataset, refer to the instructions in Get predictions for a pinned model, but use latest instead of a pinned model version.

Obter previsões para um modelo fixado para emails brutos

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails

Permissões necessárias: Exibir rótulos, Exibir origens

Importante:

Operação Faturável

Será carregada 1 AI Unit por e-mail bruto fornecido no corpo da solicitação.

  • Bash
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "raw_email": {
            "body": {
              "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
            },
            "headers": {
              "parsed": {
                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                "From": "alice@company.com",
                "Message-ID": "abcdef@company.com",
                "References": "<01234@company.com> <56789@company.com>",
                "Subject": "Figures Request",
                "To": "bob@organisation.org"
              }
            }
          },
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "raw_email": {
            "body": {
              "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
            },
            "headers": {
              "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
            }
          },
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "include_comments": false,
      "threshold": 0.25,
      "transform_tag": "generic.0.CONVKER5"
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "documents": [
        {
          "raw_email": {
            "body": {
              "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
            },
            "headers": {
              "parsed": {
                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                "From": "alice@company.com",
                "Message-ID": "abcdef@company.com",
                "References": "<01234@company.com> <56789@company.com>",
                "Subject": "Figures Request",
                "To": "bob@organisation.org"
              }
            }
          },
          "user_properties": {
            "string:City": "London"
          }
        },
        {
          "raw_email": {
            "body": {
              "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
            },
            "headers": {
              "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
            }
          },
          "user_properties": {
            "string:City": "Bucharest"
          }
        }
      ],
      "include_comments": false,
      "threshold": 0.25,
      "transform_tag": "generic.0.CONVKER5"
    }'
    
  • const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              raw_email: {
                body: {
                  plain:
                    "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice",
                },
                headers: {
                  parsed: {
                    Date: "Thu, 09 Jan 2020 16:34:45 +0000",
                    From: "alice@company.com",
                    "Message-ID": "abcdef@company.com",
                    References: "<01234@company.com> <56789@company.com>",
                    Subject: "Figures Request",
                    To: "bob@organisation.org",
                  },
                },
              },
              user_properties: { "string:City": "London" },
            },
            {
              raw_email: {
                body: {
                  html: "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>",
                },
                headers: {
                  raw: "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com",
                },
              },
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          include_comments: false,
          threshold: 0.25,
          transform_tag: "generic.0.CONVKER5",
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          documents: [
            {
              raw_email: {
                body: {
                  plain:
                    "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice",
                },
                headers: {
                  parsed: {
                    Date: "Thu, 09 Jan 2020 16:34:45 +0000",
                    From: "alice@company.com",
                    "Message-ID": "abcdef@company.com",
                    References: "<01234@company.com> <56789@company.com>",
                    Subject: "Figures Request",
                    To: "bob@organisation.org",
                  },
                },
              },
              user_properties: { "string:City": "London" },
            },
            {
              raw_email: {
                body: {
                  html: "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>",
                },
                headers: {
                  raw: "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com",
                },
              },
              user_properties: { "string:City": "Bucharest" },
            },
          ],
          include_comments: false,
          threshold: 0.25,
          transform_tag: "generic.0.CONVKER5",
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "transform_tag": "generic.0.CONVKER5",
            "documents": [
                {
                    "raw_email": {
                        "headers": {
                            "parsed": {
                                "Message-ID": "abcdef@company.com",
                                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                                "Subject": "Figures Request",
                                "From": "alice@company.com",
                                "To": "bob@organisation.org",
                                "References": "<01234@company.com> <56789@company.com>",
                            }
                        },
                        "body": {
                            "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
                        },
                    },
                    "user_properties": {"string:City": "London"},
                },
                {
                    "raw_email": {
                        "headers": {
                            "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
                        },
                        "body": {
                            "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
                        },
                    },
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
            "include_comments": False,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-raw-emails",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "transform_tag": "generic.0.CONVKER5",
            "documents": [
                {
                    "raw_email": {
                        "headers": {
                            "parsed": {
                                "Message-ID": "abcdef@company.com",
                                "Date": "Thu, 09 Jan 2020 16:34:45 +0000",
                                "Subject": "Figures Request",
                                "From": "alice@company.com",
                                "To": "bob@organisation.org",
                                "References": "<01234@company.com> <56789@company.com>",
                            }
                        },
                        "body": {
                            "plain": "Hi Bob,\n\nCould you send me the figures for today?\n\nThanks,\nAlice"
                        },
                    },
                    "user_properties": {"string:City": "London"},
                },
                {
                    "raw_email": {
                        "headers": {
                            "raw": "Message-ID: 012345@company.com\nDate: Thu, 09 Jan 2020 16:44:45 +0000\nSubject: Re: Figures Request\nFrom: bob@organisation.org\nTo: alice@company.com"
                        },
                        "body": {
                            "html": "<p>Alice,</p><p>Here are the figures for today.</p><p>Regards,<br/>Bob</p>"
                        },
                    },
                    "user_properties": {"string:City": "Bucharest"},
                },
            ],
            "threshold": 0.25,
            "include_comments": False,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • Resposta
    {
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }{
      "entities": [
        [
          {
            "capture_ids": [],
            "formatted_value": "Bob",
            "id": "76aebf2646577a1d",
            "kind": "person",
            "name": "person",
            "probability": null,
            "span": {
              "char_end": 6,
              "char_start": 3,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 12,
              "utf16_byte_start": 6
            }
          },
          {
            "capture_ids": [],
            "formatted_value": "2020-01-09 00:00 UTC",
            "id": "20beddf4c5f5bb61",
            "kind": "date",
            "name": "date",
            "probability": null,
            "span": {
              "char_end": 48,
              "char_start": 43,
              "content_part": "body",
              "message_index": 0,
              "utf16_byte_end": 96,
              "utf16_byte_start": 86
            }
          }
        ],
        []
      ],
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        [
          {
            "name": ["Some Label"],
            "probability": 0.8896465003490448
          },
          {
            "name": ["Parent Label", "Child Label"],
            "probability": 0.26687008142471313,
            "sentiment": 0.8762539502232571
          }
        ],
        [
          {
            "name": ["Other Label"],
            "probability": 0.6406207121908665
          }
        ]
      ],
      "status": "ok"
    }
Você deve fornecer a versão do modelo que deseja consultar para previsões na solicitação. Você pode usar o número inteiro da versão ou os valores especiais live ou staging para consultar a versão atual do modelo Live ou Staging.
Formato de solicitação
NomeTipoRequiredDescrição
transform_tagStringsimUma tag que especifica como os dados brutos devem ser processados.
documentsarray<Document>simUm lote de no máximo 4096 documentos no formato descrito abaixo. Lotes maiores são mais rápidos (por documento) do que os menores.
thresholdNúmeronãoO limite de confiança para filtrar os resultados do rótulo. Um número entre 1.0 e 0.0. 0.0 incluirá todos os resultados. Defina como "auto" para usar limites automáticos. Se não estiver definido, o limite padrão de 0.25 será usado.
labelsarray<Label>nãoUma lista dos rótulos solicitados a serem retornados com a opção de limites específicos de rótulos.
include_commentsBooleanonãoSe definido como true, os comentários analisados dos e-mails serão retornados no corpo da resposta.
Onde Document tem o seguinte formato:
NomeTipoRequiredDescrição
raw_emailRawEmailsimDados de email, no formato descrito aqui.
user_propertiesmap<string, string | number>nãoQualquer metadado definido do usuário que se aplique ao comentário. O formato é descrito aqui.
Observação: algumas propriedades de usuário são geradas com base no conteúdo de e-mail. Se eles entrarem em conflito com as propriedades do usuário carregadas, a solicitação falhará com 422 Unprocessable Entity.
Onde Label tem o seguinte formato:
NomeTipoRequiredDescrição
namearray<string>simO nome do rótulo a ser retornado, formatado como uma lista de rótulos hierárquicos. Por exemplo, o rótulo "Parent Label > Child Label" terá o formato ["Parent Label", "Child Label"].
thresholdNúmeronãoO limite de confiança a ser usado para o rótulo. Se não for especificado, o padrão será o limite especificado no nível superior.
Formato da Resposta
NomeTipoDescrição
statusStringok if the request is successful, or error in case of an error. SeeOverview to learn more about error responses.
commentsarray<Comment>Uma lista de comentários analisados dos emails brutos carregados, no formato descrito na Referência do comentário. Retornado apenas se você definir include_comments na solicitação.
predictionsarray<array<Label>>Uma lista de array<Label> na mesma ordem que os comentários na solicitação, em que cada Label tem o formato descrito aqui.
entitiesarray<array<Entity>>Uma lista de array<Entity> na mesma ordem que os comentários na solicitação, em que cada Entity tem o formato descrito aqui.
label_propertiesarray<LabelProperty>Uma matriz que contém as propriedades de rótulo prevista para este comentário, em que cada LabelProperty tem o formato descrito aqui.
modelModeloInformações sobre o modelo que foi usado para fazer as previsões, no formato descrito aqui.
Observação:

Para solicitações grandes, esse ponto de extremidade pode levar mais tempo para responder. Você deve aumentar o tempo limite do cliente.

Obter previsões para um modelo fixado por ID do comentário

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments

Permissões necessárias: Exibir rótulos, Exibir origens

  • Bash
    curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "threshold": 0.25,
      "uids": [
        "18ba5ce699f8da1f.0001",
        "18ba5ce699f8da1f.0002"
      ]
    }'curl -X POST 'https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments' \
        -H "Authorization: Bearer $REINFER_TOKEN" \
        -H "Content-Type: application/json" \
        -d '{
      "threshold": 0.25,
      "uids": [
        "18ba5ce699f8da1f.0001",
        "18ba5ce699f8da1f.0002"
      ]
    }'
    
  • const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          threshold: 0.25,
          uids: ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.post(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
        json: true,
        body: {
          threshold: 0.25,
          uids: ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "uids": ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.post(
        "https://<my_api_endpoint>/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/predict-comments",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
        json={
            "uids": ["18ba5ce699f8da1f.0001", "18ba5ce699f8da1f.0002"],
            "threshold": 0.25,
        },
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • Resposta
    {
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        {
          "entities": [
            {
              "capture_ids": [],
              "formatted_value": "Bob",
              "id": "76aebf2646577a1d",
              "kind": "person",
              "name": "person",
              "probability": null,
              "span": {
                "char_end": 6,
                "char_start": 3,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 12,
                "utf16_byte_start": 6
              }
            },
            {
              "capture_ids": [],
              "formatted_value": "2020-01-09 00:00 UTC",
              "id": "20beddf4c5f5bb61",
              "kind": "date",
              "name": "date",
              "probability": null,
              "span": {
                "char_end": 48,
                "char_start": 43,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 96,
                "utf16_byte_start": 86
              }
            }
          ],
          "labels": [
            {
              "name": ["Some Label"],
              "probability": 0.8896465003490448
            },
            {
              "name": ["Parent Label", "Child Label"],
              "probability": 0.26687008142471313,
              "sentiment": 0.8762539502232571
            }
          ],
          "uid": "18ba5ce699f8da1f.0001"
        },
        {
          "entities": [],
          "labels": [
            {
              "name": ["Other Label"],
              "probability": 0.6406207121908665
            }
          ],
          "uid": "18ba5ce699f8da1f.0002"
        }
      ],
      "status": "ok"
    }{
      "model": {
        "time": "2020-02-06T20:42:58.047000Z",
        "version": 5
      },
      "predictions": [
        {
          "entities": [
            {
              "capture_ids": [],
              "formatted_value": "Bob",
              "id": "76aebf2646577a1d",
              "kind": "person",
              "name": "person",
              "probability": null,
              "span": {
                "char_end": 6,
                "char_start": 3,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 12,
                "utf16_byte_start": 6
              }
            },
            {
              "capture_ids": [],
              "formatted_value": "2020-01-09 00:00 UTC",
              "id": "20beddf4c5f5bb61",
              "kind": "date",
              "name": "date",
              "probability": null,
              "span": {
                "char_end": 48,
                "char_start": 43,
                "content_part": "body",
                "message_index": 0,
                "utf16_byte_end": 96,
                "utf16_byte_start": 86
              }
            }
          ],
          "labels": [
            {
              "name": ["Some Label"],
              "probability": 0.8896465003490448
            },
            {
              "name": ["Parent Label", "Child Label"],
              "probability": 0.26687008142471313,
              "sentiment": 0.8762539502232571
            }
          ],
          "uid": "18ba5ce699f8da1f.0001"
        },
        {
          "entities": [],
          "labels": [
            {
              "name": ["Other Label"],
              "probability": 0.6406207121908665
            }
          ],
          "uid": "18ba5ce699f8da1f.0002"
        }
      ],
      "status": "ok"
    }
Você deve fornecer a versão do modelo que deseja consultar para previsões na solicitação. Você pode usar o número inteiro da versão ou os valores especiais live ou staging para consultar a versão atual do modelo Live ou Staging.
Formato de solicitação
NomeTipoRequiredDescrição
uidsarray<string>simUma lista de no máximo 4096 -s source_ide comment_id-s combinados no formato source_id.comment_id. As origens não precisam pertencer ao conjunto de dados atual - para que você possa solicitar previsões de comentários para uma origem em um conjunto de dados diferente (ou nenhum). Listas maiores são mais rápidas (por comentário) do que listas menores.
thresholdNúmeronãoO limite de confiança para filtrar os resultados do rótulo. Um número entre 1.0 e 0.0. 0.0 incluirá todos os resultados. Defina como "auto" para usar limites automáticos. Se não estiver definido, o limite padrão de 0.25 será usado.
labelsarray<Label>nãoUma lista dos rótulos solicitados a serem retornados com a opção de limites específicos de rótulos.
Onde Label tem o seguinte formato:
NomeTipoRequiredDescrição
namearray<string>simO nome do rótulo a ser retornado, formatado como uma lista de rótulos hierárquicos. Por exemplo, o rótulo "Parent Label > Child Label" terá o formato ["Parent Label", "Child Label"].
thresholdNúmeronãoO limite de confiança a ser usado para o rótulo. Se não for especificado, o padrão será o limite especificado no nível superior.
Formato da Resposta
NomeTipoDescrição
statusStringok se a solicitação for bem-sucedida, ou error em caso de erro. Consulte a Visão geral para saber mais sobre as respostas de erro.
predictionsarray<Prediction>Uma lista de previsões no formato descrito abaixo.
modelModeloInformações sobre o modelo que foi usado para fazer as previsões, no formato descrito aqui.
Onde Prediction tem o seguinte formato:
NomeTipoDescrição
uidStringUma combinação de source_id e comment_id no formato de source_id.comment_id.
labelsarray<Label>Uma matriz que contém rótulos previstos para este comentário, onde Label tem o formato descrito aqui.
entitiesarray<Entity>Uma matriz contendo entidades prevista para este comentário, onde Entity tem o formato descrito aqui.
label_propertiesarray<LabelProperty>Uma matriz que contém as propriedades de rótulo prevista para este comentário, em que cada LabelProperty tem o formato descrito aqui.
Observação: para solicitações grandes, esse ponto de extremidade pode levar mais tempo para responder. Você deve aumentar o tempo limite do cliente.

Obter estatísticas de validação do modelo

/api/v1/datasets/<project>/<dataset_name>/labellers/<version>/validation

Permissões necessárias: Exibir rótulos, Exibir origens

  • Bash
    curl -X GET 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation' \
        -H "Authorization: Bearer $REINFER_TOKEN"curl -X GET 'https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation' \
        -H "Authorization: Bearer $REINFER_TOKEN"
    
  • const request = require("request");
    
    request.get(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );const request = require("request");
    
    request.get(
      {
        url: "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers: {
          Authorization: "Bearer " + process.env.REINFER_TOKEN,
        },
      },
      function (error, response, json) {
        // digest response
        console.log(JSON.stringify(json, null, 2));
      }
    );
  • Python
    import json
    import os
    
    import requests
    
    response = requests.get(
        "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))import json
    import os
    
    import requests
    
    response = requests.get(
        "https://<my_api_endpoint>/api/v1/datasets/project1/collateral/labellers/live/validation",
        headers={"Authorization": "Bearer " + os.environ["REINFER_TOKEN"]},
    )
    
    print(json.dumps(response.json(), indent=2, sort_keys=True))
    
  • Resposta
    {
      "status": "ok",
      "validation": {
        "coverage": 0.9119927883148193,
        "dataset_quality": "good",
        "labels": [
          {
            "name": "Notification",
            "parts": ["Notification"]
          },
          {
            "name": "Notification > Out of Office",
            "parts": ["Notification", "Out of Office"]
          },
          {
            "name": "Notification > Public Holiday",
            "parts": ["Notification", "Public Holiday"]
          }
        ],
        "mean_average_precision_safe": 0.83,
        "num_amber_labels": 1,
        "num_labels": 3,
        "num_red_labels": 1,
        "num_reviewed_comments": 10251,
        "version": 5
      }
    }{
      "status": "ok",
      "validation": {
        "coverage": 0.9119927883148193,
        "dataset_quality": "good",
        "labels": [
          {
            "name": "Notification",
            "parts": ["Notification"]
          },
          {
            "name": "Notification > Out of Office",
            "parts": ["Notification", "Out of Office"]
          },
          {
            "name": "Notification > Public Holiday",
            "parts": ["Notification", "Public Holiday"]
          }
        ],
        "mean_average_precision_safe": 0.83,
        "num_amber_labels": 1,
        "num_labels": 3,
        "num_red_labels": 1,
        "num_reviewed_comments": 10251,
        "version": 5
      }
    }
Essa rota retorna estatísticas de quão bem um modelo está funcionando. As mesmas estatísticas podem ser visualizadas na página Validação. As estatísticas de um modelo podem ser solicitadas com seu número inteiro version . Você pode usar os valores especiais live e staging para recuperar estatísticas para as versões atuais do modelo Ao vivo ou de Teste, ou o valor especial latest para a versão do modelo disponível mais recentemente.
Embora esse ponto de extremidade aceite versões de modelo fixadas e não fixadas, recomendamos consultar as versões do modelo fixadas ou o valor especial latest, pois não é garantido que as estatísticas estejam disponíveis para versões de modelo não fixadas.

O objeto validation da resposta contém os campos a seguir:
NomeTipoDescrição
mean_average_precision_safefloatPontuação de Precisão média média (entre 0.0 e 1.0). Este campo será null se o MAP não estiver disponível.
num_labelsNúmeroNúmero de rótulos na taxonomia (no momento em que a versão do modelo foi fixada).
labelsarray<Label>Lista de rótulos na taxonomia (no momento em que a versão do modelo foi fixada). Observe que, como o exemplo de resposta demonstra, os rótulos pais são retornados como um rótulo separado, além de serem retornados como parte dos rótulos filhos.
num_reviewed_commentsNúmeroNúmero de comentários revisados no conjunto de dados (no momento em que a versão do modelo foi fixada).
versionNúmeroVersão do modelo.
num_amber_labelsNúmeroNúmero de rótulos no estado de aviso laranja.
num_red_labelsNúmeroNúmero de rótulos no estado de alerta vermelho.
dataset_scoreNúmeroPontuação geral do conjunto de dados, entre 0 e 100.
dataset_qualityStringUm "poor", "average", "good", "excellent", representando a classificação de qualidade geral do conjunto de dados. Pode ser null se não houver dados suficientes.
balancefloatUma medida da similaridade entre comentários revisados e não revisados (entre 0.0 e 1.0). Pode ser null se não houver dados suficientes.
balance_qualityStringUm entre "poor", "average", "good", "excellent", representando a classificação de qualidade do saldo. Pode ser null se não houver dados suficientes.
coveragefloatUm valor fracionário da cobertura do rótulo no conjunto de dados (entre 0.0 e 1.0). Pode ser null se não houver dados suficientes.
coverage_qualityStringUma "poor", "average", "good", "excellent", representando a classificação de qualidade da cobertura. Pode ser null se não houver dados suficientes.
all_labels_qualityStringUm "poor", "average", "good", "excellent", representando toda a classificação de qualidade dos rótulos. Pode ser null se não houver dados suficientes.
underperforming_labels_qualityStringUm entre "poor", "average", "good", "excellent", representando a classificação de qualidade dos rótulos de baixo desempenho. Pode ser null se não houver dados suficientes.
Onde Label tem o seguinte formato:
NomeTipoDescrição
nameStringO nome do rótulo, formatado como uma cadeia de caracteres.
partsarray<string>O nome do rótulo, formatado como uma lista de rótulos hierárquicos. Por exemplo, o rótulo "Parent Label > Child Label" terá o formato ["Parent Label", "Child Label"]

Esta página foi útil?

Obtenha a ajuda que você precisa
Aprendendo RPA - Cursos de automação
Fórum da comunidade da Uipath
Uipath Logo White
Confiança e segurança
© 2005-2024 UiPath. Todos os direitos reservados.