- Vue d'ensemble (Overview)
- Processus Document Understanding
- Didacticiels de démarrage rapide
- Composants de l'infrastructure
- Vue d’ensemble de classification de document
- Assistant de configuration des classifieurs de l'activité Classer l'étendue du document (Classify Document Scope)
- FlexiCapture Classifier
- Intelligent Keyword Classifier
- Keyword Based Classifier
- Machine Learning Classifier
- Activités liées à la classification des documents
- Assistant de configuration des classifieurs (Configure Classifiers Wizard) de l'activité Tester l'étendue des classifieurs (Train Classifier Scope)
- Vue d’ensemble de l'entraînement de la classification des documents
- Activités liées à l'entraînement de la classification des documents
- Machine Learning Classifier Trainer
- Assistant de configuration des extracteurs (Configure Extractors Wizard) de l'activité Étendue de l'extraction de données (Data Extraction Scope)
- Vue d’ensemble de l’extraction des données
- Activités liées à l'extraction de données
- FlexiCapture Extractor
- Form Extractor
- Extracteur de formulaires intelligents
- Extracteur d'apprentissage automatique
- Regex Based Extractor
- Paquets ML
- Vue d'ensemble (Overview)
- Paquets ML - Document Understanding
- Classifieur de documents - Paquet ML
- Paquets ML avec capacités OCR
- 1040 - Paquet ML
- Annexe C du formulaire 1040 Planification C - Paquet ML
- 1040 Planification D - Paquet ML
- Annexe E du formulaire 1040 - Paquet ML
- 4506T - Paquet ML
- 990 - Paquet ML - Aperçu
- ACORD125 - Paquet ML
- ACORD126 - Paquet ML
- ACORD131 - Paquet ML
- ACORD140 - Paquet ML
- ACORD25 - Paquet ML
- États financiers - Paquet ML
- Connaissement - Paquet ML
- Paquet ML - Certificat de constitution
- Paquet ML - Certificat d'origine
- Chèques - Paquet ML
- Paquet ML - Certificat de produit pour enfants
- CMS1500 - Paquet ML
- Paquet ML - Déclaration de conformité de l’UE
- États financiers - Paquet ML
- FM1003 - Paquet ML
- I9 - Paquet ML
- Cartes d’identité - Paquet ML
- Factures - Paquet ML
- FacturesAustralie - Paquet ML
- FacturesChine - Paquet ML
- FacturesInde - Paquet ML
- FacturesJapon - Paquet ML
- Paquet ML - Livraison des factures
- Listes de colisage - Paquet ML
- Passeports - Paquet ML
- Fiches de paie - Paquet ML
- Bons de commande - Paquet ML
- Reçus – Paquet ML
- RemittanceAdvices - Paquet ML
- Formulaire UB04 - Paquet ML
- Factures de services publics - Paquet ML
- Titres de véhicule - Paquet ML
- W2 - Paquet ML
- W9 - Paquet ML
- Autres paquets ML prêts à l’emploi
- Points de terminaison publics
- Prérequis matériels
- Pipelines
- Document Manager
- Services OCR
- Apprentissage profond
- Document Understanding déployé dans Automation Suite
- Installer et utiliser
- Première expérience d'exécution
- Déployer UiPathDocumentOCR
- Déployer un paquet ML prêt à l'emploi
- Bundles hors ligne 2023.10.10
- Bundles hors ligne : 2023.10.9
- Bundles 2023.10.8 hors ligne
- Bundles 2023.10.7+patch1 hors ligne
- Bundles 2023.10.7 hors ligne
- Bundles 2023.10.6 hors ligne
- Bundles 2023.10.5 hors ligne
- Bundles 2023.10.4 hors ligne
- Bundles 2022.10.3 hors ligne
- Bundles 2023.10.2 hors ligne
- Bundles 2022.10.1 hors ligne
- Bundles 2023.10.0 hors ligne
- Utiliser le gestionnaire de documents
- Utiliser l'infrastructure
- Document Understanding déployé dans une version AI Center autonome
- Licences
- Activités (Activities)
- UiPath.Abbyy.Activities
- UiPath.AbbyyEmbedded.Activities
- UiPath.DocumentProcessing.Contracts
- UiPath.DocumentUnderstanding.ML.Activities
- UiPath.DocumentUnderstanding.OCR.LocalServer.Activities
- UiPath.IntelligentOCR.Activities
- UiPath.OCR.Activities
- UiPath.OCR.Contracts
- UiPath.OmniPage.Activities
- UiPath.PDF.Activities

Guide de l'utilisateur de Document Understanding
Utiliser le gestionnaire de documents
linkCette page décrit comment utiliser Data Manager pour labelliser un nouvel ensemble de données et recycler un modèle ML.
Access and configure Document Manager
linkLancez la session de labellisation de données créée dans Première expérience d'exécution (First Run Experience) et accédez aux paramètres pour configurer l'OCR.
Choisissez l’OCR que vous avez l’intention d’utiliser dans le menu déroulant de la méthode OCR. Pour UiPathDocumentOCR, collez la clé de licence Document UnderstandingTM (récupérez la clé API Document Understanding à partir de la page Admin > Licence), puis collez l’URL OCR que vous avez générée lors du déploiement de UiPathDocumentOCR.
Configurez l'étiquetage préalable avec les modèles que vous avez déployés en suivant les instructions fournies ici. Collez le point de terminaison public du modèle Compétence ML et la clé de licence Document Understanding, puis sélectionnez Enregistrer.
Pour plus de détails, veuillez consulter la documentation ici : Utiliser un schéma prédéfini.
Importer des documents
link- Cliquez sur le bouton Importer (Import)
depuis une session Data Manager.
- Donnez un nom à l’ensemble de données et cliquez sur Parcourir les fichiers à télécharger (Browse files to upload).
- Sélectionnez le document que vous souhaitez télécharger.
- Sélectionnez Oui.
Créer des champs d'extraction
linkSélectionnez pour créer les champs à extraire.
Vous pouvez créer jusqu'à 40 champs.
Pour cet exercice de validation, vous pouvez créer des champs de facture courants tels que date, nom, numero-de-facture et total. Veuillez vous assurer de modifier le type de contenu en conséquence : date (date), nom (string), numéro de facture (string) et total (nombre).
Labelliser des documents
linkVous pouvez maintenant commencer à labelliser les documents.
Sélectionnez le bouton Prédire en haut pour utiliser le modèle de facture de base pour prédire les étiquettes des champs définis et corrigez-le si la prédiction est inexacte.
Pour modifier l'étiquette, faites glisser la souris sur le champ et appuyez sur le raccourci clavier pour l'étiqueter.
Utilisez la flèche du haut pour passer au document suivant jusqu'à ce que vous ayez terminé la validation des libellés pour toutes les factures téléchargées.
Exporter des documents
link- Veillez à sélectionner l'ensemble de données correct dans le filtrage des ensembles de données et sélectionnez le bouton Exporter
.
- Sélectionnez Exporter(Export) .
- Accédez à la section Ensembles de données du même projet AI Center, où vous pourrez voir l'ensemble de données d'entraînement exporté.
Former un modèle personnalisé sur AI Center
- Accédez à Pipelines > Créer un nouveau fichier (Create new). Veuillez sélectionner le type d'exécution d'évaluation, sélectionner le package de modèle et l'ensemble de données d'entrée.
- Sélectionnez le sous-dossier sous Exporter (Export) comme ensemble de données d’entrée.
- Sélectionnez Créer (Create) pour démarrer le pipeline. L’exécution du pipeline sur les machines à processeur peut prendre 1 à 2 heures.
Déployer le modèle ML recyclé en tant que compétence ML
linkAccédez à Compétences ML (ML Skills) et créez une nouvelle compétence ML.
Choisissez le même package de modèle de facture créé auparavant. Comme nous avons reformé le modèle, il existe maintenant une nouvelle version mineure du package (1 vs 0). Assurez-vous de sélectionner le dernier.
Une fois que la compétence ML est créée, accédez à la section Modifier le déploiement actuel pour publier la compétence ML. Cliquez sur le bouton bascule et sélectionnez Confirmer.
Copiez l'URL de la compétence ML publique pour une utilisation ultérieure.
Félicitations ! Vous avez maintenant recyclé un modèle Facture (Invoice) avec votre propre ensemble de données et créé le point de terminaison pour accéder au modèle.