ai-center
2023.10
false
Wichtig :
Bitte beachten Sie, dass dieser Inhalt teilweise mithilfe von maschineller Übersetzung lokalisiert wurde.
UiPath logo, featuring letters U and I in white
AI Center – Benutzerhandbuch
Automation CloudAutomation SuiteStandalone
Last updated 22. Okt. 2024

TPOT AutoML Classification

OS-Pakete > Tabellendaten > TPOTAutoMLClassification

Bei diesem Modell handelt es sich um ein generisches Klassifizierungsmodell für Tabellendaten (nur numerische Werte), das trainiert werden muss, bevor es für Vorhersagen verwendet wird. Es basiert auf TPOT, um automatisch das beste Modell zu finden.

TPOT ist ein automatisiertes Machine Learning-Tool für Python, das Machine Learning-Pipelines mithilfe von genetischer Programmierung optimiert. TPOT automatisiert den mühseligsten Teil des Machine Learning, indem Tausende möglicher Pipelines intelligent erkundet werden, um die beste für Ihre Daten zu finden. Sobald TPOT mit der Suche fertig ist (oder Sie keine Lust mehr haben zu warten), erhalten Sie den Python-Code für die beste Pipeline, die es gefunden hat, damit Sie von dort aus an der Pipeline basteln können. TPOT basiert auf Scikit-learn, daher sollte der gesamte Code, der generiert wird, für Benutzer von Scikit-learn vertraut wirken.

Modelldetails

Eingabetyp

JSON

Eingabebeschreibung

Features, die vom Modell verwendet werden, um Vorhersagen zu treffen. Beispiel: { „Funktion1“: 12, „Funktion2“: 222, ..., „FunktionN“: 110}

Ausgabebeschreibung

JSON mit vorhergesagter Klasse, zugehöriger Konfidenz zu dieser Klassenvorhersage (zwischen 0 und 1) sowie dem Bezeichnungsnamen. Bezeichnungsnamen werden nur zurückgegeben, wenn die Bezeichnungscodierung von der Pipeline innerhalb des AI Centers durchgeführt wurde. Einige Scikit-learn-Modelle unterstützen keine Konfidenzbewertungen. Wenn es sich bei der Ausgabe der Optimierungspipeline um ein Scikit-Lernmodell handelt, das keine Konfidenzbewertungen unterstützt, enthält die Ausgabe nur die vorhergesagte Klasse.

Beispiel:

{
  "predictions": 0,
  "confidences": 0.6,
  "labels": "yes"
}{
  "predictions": 0,
  "confidences": 0.6,
  "labels": "yes"
}

Oder wenn die Bezeichnungscodierung außerhalb des Modells erfolgt ist:

{
  "predictions": 0,
  "confidences": 0.6
}{
  "predictions": 0,
  "confidences": 0.6
}

Pipelines

Alle drei Pipelinetypen (Vollständiges Training, Training und Auswertung) werden von diesem Paket unterstützt.

Während Sie das Modell zum ersten Mal trainieren, werden die Klassen abgeleitet, indem das gesamte bereitgestellte Dataset betrachtet wird.

Dataset-Format

Dieses ML-Paket sucht nach CSV-Dateien in Ihrem Dataset (nicht in Unterverzeichnissen)

Die CSV-Dateien müssen den zwei folgenden Regeln folgen:

  • Die erste Zeile der Daten muss die Header-/Spaltennamen enthalten.
  • Alle Spalten, mit Ausnahme der target_column, müssen numerisch sein (int, float). Das Modell kann keine Funktionscodierung durchführen, aber es kann eine Zielcodierung vornehmen. Wenn die Zielcodierung vom Modell durchgeführt wird, gibt das Modell zur Vorhersagezeit auch die Bezeichnung der Zielvariablen zurück.

Umgebungsvariablen

  • max_time_mins: Zeit zum Ausführen der Pipeline (in Minuten). Je länger die Trainingszeit ist, desto besser stehen die Chancen für TPOT, ein gutes Modell zu finden. (Standardwert: 2)
  • target_column: Name der Zielspalte (Standardwert: „target“)
  • scoring: TPOT nutzt sklearn.model_selection.cross_val_score für die Bewertung von Pipelines und bietet daher die gleiche Unterstützung für Auswertungsfunktionen (Standardwert: „accuracy“). Es werden standardmäßige Scikit-learn-Bewertungsmetriken verwendet (https://scikit-learn.org/stable/modules/model_evaluation.html)
  • keep_training: Typische TPOT-Ausführungen dauern stunden- bis tagelang (es sei denn, es ist ein kleines Dataset), aber Sie können die Ausführung zwischendurch unterbrechen und die bisher besten Ergebnisse einsehen. Wenn keep_training auf „true“ gesetzt ist, setzt TPOT das Training an dem Punkt fort, wo es aufgehört hat
Hinweis: Wenn sich die Zielspalte Ihrer Datei vom Standardwert ( target ) unterscheidet, müssen Sie die Umgebungsvariable target_column manuell aktualisieren. Sie können dies im Fenster Neue Pipelineausführung erstellen tun, indem Sie auf die Schaltfläche + Neu hinzufügen im Abschnitt Parameter eingeben klicken. Fügen Sie im Feld Umgebungsvariable die Variable (target_column) und im Feld Wert den Namen der Spalte aus Ihrer Datei hinzu. Wenn Sie fertig sind, klicken Sie auf das Symbol.


Artefakte

TPOT exportiert den entsprechenden Python-Code für die optimierte Pipeline in eine Python-Datei namens „TPOT_pipeline.py“. Sobald der Code die Ausführung beendet hat, enthält „TPOT_pipeline.py“ den Python-Code für die optimierte Pipeline.

  • Modelldetails
  • Eingabetyp
  • Eingabebeschreibung
  • Ausgabebeschreibung
  • Pipelines
  • Dataset-Format
  • Umgebungsvariablen
  • Artefakte
  • Papier

War diese Seite hilfreich?

Hilfe erhalten
RPA lernen – Automatisierungskurse
UiPath Community-Forum
Uipath Logo White
Vertrauen und Sicherheit
© 2005–2024 UiPath. Alle Rechte vorbehalten