ai-center
2023.10
false
Wichtig :
Bitte beachten Sie, dass dieser Inhalt teilweise mithilfe von maschineller Übersetzung lokalisiert wurde.
UiPath logo, featuring letters U and I in white
AI Center – Benutzerhandbuch
Automation CloudAutomation SuiteStandalone
Last updated 22. Okt. 2024

Verwalten von ML-Paketen

Hinweis:

Ab 2022.10, Das Importieren und Exportieren von ML-Paketen mithilfe von Skripts wird nicht mehr unterstützt.

Weitere Informationen zum Importieren und Exportieren von ML-Paketen über die UI finden Sie in den Abschnitten ML-Paket importieren und ML-Pakete herunterladen.

Paketvalidierungen

Für die Ausgabe

Bei Modellen, die mit dem Flag inaktiv für Training aktivieren hochgeladen werden, validiert das AI Center beim Hochladen eines Modells die hochgeladene .zip-Datei anhand der hier beschriebenen Anforderungen. Die folgenden drei Überprüfungen werden durchgeführt:
  1. Ein nicht leerer Stammordner ist vorhanden.
  2. Eine requirements.txt-Datei ist vorhanden.
  3. Im Stammordner ist eine Datei mit dem Namen main.py vorhanden, die eine Klasse Main implementiert. Die Klasse wird weiter validiert, um eine __init__- und eine predict-Funktion zu implementieren.

Das Ergebnis der Validierung (Erfolg oder Fehlschlag) sowie eventuelle Fehler, die zu einem Fehlschlag geführt haben, werden auf der Seite ML-Protokolle angezeigt.

Für das Training

Bei Modellen, die bei der Option Training aktivieren mit dem Flag aktiv hochgeladen wurden, überprüft AI Center nicht nur die oben genannten Anforderungen, sondern auch die hochgeladene .zip-Datei anhand der hier beschriebenen Anforderungen. Für diese Pakete werden die folgenden beiden Prüfungen durchgeführt:
  1. Ein nicht leerer Stammordner ist vorhanden.
  2. Im Stammordner ist eine Datei mit dem Namen train.py vorhanden, die eine Klasse Main implementiert. Die Klasse wird weiter validiert, um eine __init__-Funktion und die folgenden Funktionen zu implementieren: train, evaluate und save.

Das Ergebnis der Validierung (Erfolg oder Fehlschlag) sowie eventuelle Fehler, die zu einem Fehlschlag geführt haben, werden auf der Seite ML-Protokolle angezeigt.

Anzeigen von ML-Paketdetails

Klicken Sie auf ein Paket in der Liste und rufen Sie ML-Paket > [ML-Paketname] auf.

Zeigen Sie auf der Registerkarte Version die Details an: Paketversion, Erstellungszeit, Änderungsprotokoll, Status, ob Training aktiviert ist, ob empfohlene GPU aktiviert ist, und Argumente.



Weitere Informationen zu den einzelnen Einträgen finden Sie in der ML-Paketversion über das Symbol ⁝ und Details. Ein Dialogfeld mit allen Informationen zur Paketversion wird angezeigt.



Zeigen Sie auf der Registerkarte Pipelineausführungen die Details im Zusammenhang mit den Pipelineausführungen des Pakets an: Paketname, Typ, Version, Status, Erstellungszeit, Dauer, Punktzahl und zusätzliche Details.

Versionskontrolle

AI Center unterstützt auch die Versionierung und Versionsverwaltung von Paketen. Wenn ein Paket hochgeladen wird, wird es als Version 1.0 dieses Pakets angezeigt (dabei ist 1 die Hauptversionsnummer und 0 die Nebenversionsnummer). Dies hilft bei der Unterscheidung zwischen Paketen, die von Benutzern hochgeladen werden, und Paketen, die über Pipelines erneut trainiert werden, wobei sich bei letzteren nur die Nebenversionsnummer ändert.

Hochladen neuer ML-Paketversionen

Führen Sie die folgenden Schritte aus, um eine neue Version für ein bereits hochgeladenes Paket hochzuladen:

  1. Klicken Sie auf der Seite ML-Pakete neben einem Paket auf ⁝ und wählen Sie die Option Neue Version hochladen aus.

    Alternativ klicken Sie auf der Seite ML-Paket > [ML-Paketname] auf Neue Version hochladen. Das Fenster Neue Paketversion hochladen für > [ML-Paketname] wird angezeigt, wobei die meisten Felder mit den Informationen ausgefüllt sind, die Sie zum Zeitpunkt des ersten Hochladens dieses Pakets angegeben haben.

  2. Klicken Sie auf Paket hochladen, um die gewünschte .zip-Datei auszuwählen, oder ziehen Sie die Datei per Drag and Drop zu diesem Feld.
  3. Optional: Aktualisieren Sie die vorhandenen Informationen in den folgenden Feldern:
    • Eingabebeschreibung
    • Ausgabebeschreibung
    • Sprache
  4. Optional: Geben Sie im Feld ChangeLog die Änderungen ein.
  5. Wählen Sie aus, ob das Modell eine GPU benötigt; standardmäßig ist dies auf „Nein“ festgelegt.
  6. Wählen Sie aus, ob Trainings für Ihr Modell aktiviert werden sollen.
  7. Klicken Sie auf Erstellen, um die neue Version für das vorhandene hochgeladene Paket hochzuladen, oder auf Abbrechen, um den Prozess abzubrechen. Das Fenster Paket hochladen wird geschlossen und die neue Version des Pakets hochgeladen. Es kann einige Minuten dauern, bis Ihr Upload weitergegeben wird.


Die neue Version des Pakets ist nicht direkt auf der Seite ML-Pakete sichtbar. Sie können die Informationen auf der Seite ML-Paketdetails für dieses Paket anzeigen.

Hinweis: Wenn eine neue Version in ein vorhandenes Paket hochgeladen wird, wird eine neue Hauptversion erstellt. Wenn ich beispielsweise mein erstes Paket hochgeladen habe, ist dieser Upload Version 1.0. Wenn ich eine neue Version hochlade, ist dies Version 2.0.

ML-Paketversionen erstellt durch Trainingspipelines

Wenn eine Trainingspipeline oder eine vollständige Pipeline erfolgreich auf einer Paketversion ausgeführt wird, wird eine neue Nebenversion erstellt. Wenn ich z. B. ein Paket (Version 1.0) hochgeladen und eine Trainingspipeline gestartet habe, wird nach Abschluss Version 1.1 auf der Seite ML-Paketdetails wie im Folgenden angezeigt:



Anzeigen von Paketargumenten

Klicken Sie auf der Seite ML-Paket > [ML-Paketname] unter der Registerkarte Version neben einer Paketversion auf das Informationssymbol. Das Fenster Argumente für > [ML-Paketname] > [ML-Paketversion] wird angezeigt.

Der Eingabetyp und die Eingabe- und Ausgabebeschreibungen der ausgewählten Paketversion werden angezeigt. Bitte beachten Sie, dass Sie die Werte nicht bearbeiten können.

Löschen von ML-Paketen

Pakete können nur gelöscht werden, wenn sie nicht innerhalb einer Fähigkeit bereitgestellt werden und derzeit keine Pipelines mit diesen Paketen ausgeführt werden.

  1. Klicken Sie auf der Seite ML-Pakete neben einem Paket auf ⁝ und wählen Sie die Option Nicht bereitgestellte Versionen löschen aus. Ein Bestätigungsfenster wird angezeigt.
  2. Klicken Sie im Bestätigungsfenster auf OK, um alle nicht bereitgestellten Versionen des ausgewählten Pakets zu löschen. Wenn eine Paketversion Teil einer Fähigkeit ist (sie ist aktiv), wird sie NICHT gelöscht. Wenn alle Versionen inaktiv sind, werden sie alle gelöscht.

ODER

  1. Klicken Sie auf der Seite ML-Paket > [ML-Paketname] unter der Registerkarte Version neben einer Paketversion auf ⋮ und wählen Sie Löschen aus. Ein Bestätigungsfenster wird angezeigt.
  2. Klicken Sie im Bestätigungsfenster auf OK, um die ausgewählte Paketversion zu löschen. Wenn eine Paketversion Teil einer Fähigkeit ist (sie ist aktiv), wird sie NICHT gelöscht. Wenn dies die einzige Version für das ausgewählte Paket ist, wird auch das Paket selbst gelöscht.

War diese Seite hilfreich?

Hilfe erhalten
RPA lernen – Automatisierungskurse
UiPath Community-Forum
Uipath Logo White
Vertrauen und Sicherheit
© 2005–2024 UiPath. Alle Rechte vorbehalten