- Versionshinweise
- Bevor Sie beginnen
- Erste Schritte
- Installieren der Automation Suite
- Migration und Upgrade
- Projekte
- Datasets
- ML-Pakete
- Pipelines
- ML-Skills
- ML-Protokolle
- Document Understanding im AI Center
- Lizenzierung
- Anleitungen zu …
- Grundlegende Anleitung zur Fehlerbehebung
Erstellen von ML-Paketen
Die Data Scientists erstellen vortrainierte Modelle mit Python oder einer AutoML-Plattform. Diese Modelle werden von RPA-Entwicklern innerhalb eines Workflows verwendet.
Ein Paket muss ein paar Voraussetzungen erfüllen. Diese Voraussetzungen werden in Komponenten unterteilt, die für die Ausgabe eines Modells erforderlich sind, und Komponenten, die für das Training eines Modells erforderlich sind.
- Ein Ordner, der eine main.py-Datei im Stammverzeichnis dieses Ordners enthält.
- In dieser Datei eine Klasse mit dem Namen Main, die mindestens zwei Funktionen implementiert:
__init__(self)
: Akzeptiert kein Argument und lädt Ihr Modell und/oder lokale Daten für das Modell (z. B. Worteinbettungen).predict(self, input)
: Eine Funktion, die zum Zeitpunkt der Modellbereitstellung aufgerufen wird und einen String zurückgibt.
- Eine Datei mit dem Namen requirements.txt mit Abhängigkeiten, die zum Ausführen des Modells erforderlich sind.
predict
wird als Endpunkt des Modells verwendet.
- Stellen Sie im gleichen Stammordner mit der main.py-Datei eine Datei mit dem Namen train.py bereit.
- Geben Sie in dieser Datei eine Klasse mit dem Namen Main an, die mindestens vier Funktionen implementiert. Alle folgenden Funktionen mit Ausnahme von
__init__
sind optional, beschränken jedoch den Typ der Pipelines, die mit dem entsprechenden Paket ausgeführt werden können.__init__(self)
: Akzeptiert kein Argument und lädt Ihr Modell und/oder Daten für das Modell (z. B. Worteinbettungen).train(self, training_directory)
: Nimmt als Eingabe ein Verzeichnis mit beliebig strukturierten Daten und führt den gesamten Code aus, der zum Trainieren eines Modells erforderlich ist. Diese Funktion wird aufgerufen, wenn eine Trainingspipeline ausgeführt wird.evaluate(self, evaluation_directory)
: Nimmt als Eingabe ein Verzeichnis mit beliebig strukturierten Daten, führt den gesamten Code aus, der zum Auswerten eines Modus erforderlich ist, und gibt eine einzelne Punktzahl für diese Bewertung zurück. Diese Funktion wird aufgerufen, wenn eine Auswertungspipeline ausgeführt wird.save(self)
: Akzeptiert kein Argument. Diese Funktion wird nach jedem Aufruf dertrain
-Funktion aufgerufen, um Ihr Modell beizubehalten.process_data(self, input_directory)
: Nimmt eineinput_directory
-Eingabe mit beliebig strukturierten Daten. Diese Funktion wird nur aufgerufen, wenn eine vollständige Pipeline ausgeführt wird. Bei der Ausführung einer vollständigen Pipeline kann diese Funktion beliebige Datentransformationen durchführen und Daten aufteilen. Insbesondere sind alle Daten, die in dem Pfad gespeichert werden, auf den die Umgebungsvariabletraining_data_directory
verweist, die Eingabe dertrain
-Funktion und alle Daten, die in dem Pfad gespeichert werden, auf den die Umgebungsvariableevaluation_data_directory
verweist, sind die Eingabe derevaluation
-Funktion oben.
Um AI Center in einem RPA-Workflow einfacher zu verwenden, kann das Paket als einer von drei Eingabetypen bezeichnet werden: String, Datei und Dateien (festgelegt beim Hochladen des Pakets).
json
als Eingabetyp des Pakets ausgewählt haben.
predict
. Im Folgenden finden Sie eine Handvoll Beispiele für die Deserialisierung von Daten in Python:
Robot sends raw string to ML Skill Activity
# E.g. skill_input='a customer complaint'`
def predict(self, skill_input):
example = skill_input # No extra processing
# Robot sends json formatted string to ML Skill Activity
# E.g skill_input='{'email': a customer complaint', 'date': 'mm:dd:yy'}'
def predict(self, skill_input):
import json
example = json.loads(skill_input)
# Robot sends json formatted string with number array to ML Skill Activity
# E.g. skill_input='[10, 15, 20]'
def predict(self, skill_input):
import json
import numpy as np
example = np.array(json.loads(skill_input))
# Robot sends json formmatted pandas dataframe
# E.g. skill_input='{"row 1":{"col 1":"a","col 2":"b"},
# "row 2":{"col 1":"c","col 2":"d"}}'
def predict(self, skill_input):
import pandas as pd
example = pd.read_json(skill_input)
Robot sends raw string to ML Skill Activity
# E.g. skill_input='a customer complaint'`
def predict(self, skill_input):
example = skill_input # No extra processing
# Robot sends json formatted string to ML Skill Activity
# E.g skill_input='{'email': a customer complaint', 'date': 'mm:dd:yy'}'
def predict(self, skill_input):
import json
example = json.loads(skill_input)
# Robot sends json formatted string with number array to ML Skill Activity
# E.g. skill_input='[10, 15, 20]'
def predict(self, skill_input):
import json
import numpy as np
example = np.array(json.loads(skill_input))
# Robot sends json formmatted pandas dataframe
# E.g. skill_input='{"row 1":{"col 1":"a","col 2":"b"},
# "row 2":{"col 1":"c","col 2":"d"}}'
def predict(self, skill_input):
import pandas as pd
example = pd.read_json(skill_input)
predict
-Funktion als serialisierte Bytezeichenfolge. So kann der RPA-Entwickler einen Pfad zu einer Datei übergeben, anstatt die Datei im Workflow selbst lesen und serialisieren zu müssen.
predict
. Die Deserialisierung von Daten erfolgt auch in der Funktion predict
, im Allgemeinen werden Bytes nur direkt in ein dateiähnliches Objekt gelesen, wie unten:
ML Package has been uploaded with *file* as input type. The ML Skill Activity
# expects a file path. Any file type can be passed as input and it will be serialized.
def predict(self, skill_input):
import io
file_like = io.BytesIO(skill_input)
ML Package has been uploaded with *file* as input type. The ML Skill Activity
# expects a file path. Any file type can be passed as input and it will be serialized.
def predict(self, skill_input):
import io
file_like = io.BytesIO(skill_input)
Das Lesen der serialisierten Bytes wie oben entspricht dem Öffnen einer Datei mit aktiviertem Flag für binäres lesen. Um das Modell lokal zu testen, lesen Sie eine Datei als Binärdatei. Im folgenden Beispiel wird eine Bilddatei gelesen und lokal getestet:
main.py where model input is an image
class Main(object):
...
def predict(self, skill_input):
import io
from PIL import Image
image = Image.open(io.BytesIO(skill_input))
...
if__name__ == '_main_':
# Test the ML Package locally
with open('./image-to-test-locally.png', 'rb') as input_file:
file_bytes = input_file.read()
m = Main()
print(m.predict(file bytes))
main.py where model input is an image
class Main(object):
...
def predict(self, skill_input):
import io
from PIL import Image
image = Image.open(io.BytesIO(skill_input))
...
if__name__ == '_main_':
# Test the ML Package locally
with open('./image-to-test-locally.png', 'rb') as input_file:
file_bytes = input_file.read()
m = Main()
print(m.predict(file bytes))
csv
-Datei und die Verwendung eines pandas Dataframe in der Funktion predict
:
main.py where model input is a csv file
class Main(object):
...
def predict(self, skill_input):
import pandas as pd
data frame = pd.read_csv(io.BytesIO(skill_input))
...
if name == '_main_':
# Test the ML Package locally
with open('./csv—to—test—locally.csv', 'rb') as input_file:
bytes = input_file.read()
m = Main()
print(m.predict(bytes))
main.py where model input is a csv file
class Main(object):
...
def predict(self, skill_input):
import pandas as pd
data frame = pd.read_csv(io.BytesIO(skill_input))
...
if name == '_main_':
# Test the ML Package locally
with open('./csv—to—test—locally.csv', 'rb') as input_file:
bytes = input_file.read()
m = Main()
print(m.predict(bytes))
predict
.
Eine Liste von Dateien kann an eine Fähigkeit gesendet werden. Innerhalb des Workflows ist die Eingabe der Aktivität eine Zeichenfolge mit Pfaden zu den Dateien, die durch ein Komma getrennt sind.
predict
wird eine Liste von Bytes eingegeben, bei denen jedes Element in der Liste die Bytezeichenfolge der Datei ist.
train.py
kann jede ausgeführte Pipeline beliebige Daten beibehalten, die als Pipelineausgabe bezeichnet werden. Alle Daten, die aus den Artefakten der Umgebungsvariablen in den Verzeichnispfad geschrieben werden, werden beibehalten und können jederzeit angezeigt werden, indem Sie zur Seite Pipelinedetails navigieren. In der Regel kann jede Art von Diagrammen, Statistiken der Trainings-/Auswertungsaufträge im Verzeichnis artifacts
gespeichert werden und am Ende der Pipelineausführung über die Benutzeroberfläche aufgerufen werden.
train.py where some historical plot are saved in ./artifacts directory during Full Pipeline execution
# Full pipeline (using process_data) will automatically split data.csv in 2/3 train.csv (which will be in the directory passed to the train function) and 1/3 test.csv
import pandas as pd
from sklearn.model_selection import train_test_split
class Main(object):
...
def process_data(self, data_directory):
d = pd.read_csv(os.path.join(data_directory, 'data.csv'))
d = self.clean_data(d)
d_train, d_test = train_test_split(d, test_size=0.33, random_state=42)
d_train.to_csv(os.path.join(data_directory , 'training', 'train.csv'), index=False)
d_test.to_csv (os.path.join(data__directory , 'test' , 'test.csv'), index=False)
self.save_artifacts(d_train, 'train_hist.png', os.environ["artifacts"])
self.save_artifacts(d_test, 'test_hist.png', os.environ["artifacts"])
...
def save_artifacts(self, data, file_name, artifact_directory):
plot = data.hist()
fig = plot[0][0].get_figure()
fig.savefig(os.path.join(artifact_directory, file_name))
...
train.py where some historical plot are saved in ./artifacts directory during Full Pipeline execution
# Full pipeline (using process_data) will automatically split data.csv in 2/3 train.csv (which will be in the directory passed to the train function) and 1/3 test.csv
import pandas as pd
from sklearn.model_selection import train_test_split
class Main(object):
...
def process_data(self, data_directory):
d = pd.read_csv(os.path.join(data_directory, 'data.csv'))
d = self.clean_data(d)
d_train, d_test = train_test_split(d, test_size=0.33, random_state=42)
d_train.to_csv(os.path.join(data_directory , 'training', 'train.csv'), index=False)
d_test.to_csv (os.path.join(data__directory , 'test' , 'test.csv'), index=False)
self.save_artifacts(d_train, 'train_hist.png', os.environ["artifacts"])
self.save_artifacts(d_test, 'test_hist.png', os.environ["artifacts"])
...
def save_artifacts(self, data, file_name, artifact_directory):
plot = data.hist()
fig = plot[0][0].get_figure()
fig.savefig(os.path.join(artifact_directory, file_name))
...
Während der Modellentwicklung muss das TensorFlow-Diagramm in denselben Thread geladen werden, der auch zur Ausgabe verwendet wird. Dazu muss das Standarddiagramm verwendet werden.
Im Folgenden finden Sie ein Beispiel mit den erforderlichen Änderungen:
import tensorflow as tf
class Main(object):
def __init__(self):
self.graph = tf.get_default_graph() # Add this line
...
def predict(self, skill_input):
with self.graph.as_default():
...
import tensorflow as tf
class Main(object):
def __init__(self):
self.graph = tf.get_default_graph() # Add this line
...
def predict(self, skill_input):
with self.graph.as_default():
...
Wenn die GPU bei der Erstellung von Fähigkeiten aktiviert ist, wird sie auf einem Image mit NVIDIA GPU-Treiber 418, CUDA Toolkit 10.0 und der Laufzeitbibliothek CUDA Deep Neural Network Library (cuDNN) 7.6.5 bereitgestellt.
IrisClassifier.sav
enthalten, das zur Verfügung gestellt wird.
- Anfängliche Projektstruktur (ohne main.py und requirements.txt):
IrisClassifier/ - IrisClassifier.sav
IrisClassifier/ - IrisClassifier.sav - Beispielhafte main.py, die dem Stammordner hinzugefügt werden soll:
from sklearn.externals import joblib import json class Main(object): def __init__(self): self.model = joblib.load('IrisClassifier.sav') def predict(self, X): X = json.loads(X) result = self.model.predict_proba(X) return json.dumps(result.tolist())
from sklearn.externals import joblib import json class Main(object): def __init__(self): self.model = joblib.load('IrisClassifier.sav') def predict(self, X): X = json.loads(X) result = self.model.predict_proba(X) return json.dumps(result.tolist()) - requirements.txt hinzufügen:
scikit-learn==0.19.0
scikit-learn==0.19.0Hinweis: Bei pip-Bibliotheken müssen einige Einschränkungen beachtet werden. Stellen Sie sicher, dass Sie Bibliotheken unter den folgenden Einschränkungsdateien installieren können:Um dies zu testen, können Sie den folgenden Befehl in einer neuen Umgebung verwenden und sicherstellen, dass alle Bibliotheken ordnungsgemäß installiert sind:itsdangerous<2.1.0 Jinja2<3.0.5 Werkzeug<2.1.0 click<8.0.0
itsdangerous<2.1.0 Jinja2<3.0.5 Werkzeug<2.1.0 click<8.0.0pip install -r requirements.txt -c constraints.txt
pip install -r requirements.txt -c constraints.txt - Endgültige Ordnerstruktur:
IrisClassifier/ - IrisClassifier.sav - main.py - requirements.txt
IrisClassifier/ - IrisClassifier.sav - main.py - requirements.txt
In diesem Beispiel erfordert das Geschäftsproblem, dass das Modell neu trainiert wird. Aufbauend auf dem oben beschriebenen Paket haben Sie möglicherweise Folgendes:
- Anfängliche Projektstruktur (Paket ,das nur ausgibt):
IrisClassifier/ - IrisClassifier.sav - main.py - requirements.txt
IrisClassifier/ - IrisClassifier.sav - main.py - requirements.txt - Beispielcode für train.py, der dem Stammordner hinzugefügt werden sollte:
import pandas as pd import joblib class Main(object): def __init__(self): self.model_path = './IrisClassifier.sav' self.model = joblib.load(self.model_path) def train(self, training_directory): (X,y) = self.load_data(os.path.join(training_directory, 'train.csv')) self.model.fit(X,y) def evaluate(self, evaluation_directory): (X,y) = self.load_data(os.path.join(evaluation_directory, 'evaluate.csv')) return self.model.score(X,y) def save(self): joblib.dump(self.model, self.model_path) def load_data(self, path): # The last column in csv file is the target column for prediction. df = pd.read_csv(path) X = df.iloc[:, :-1].get_values() y = df.iloc[:, 'y'].get_values() return X,y
import pandas as pd import joblib class Main(object): def __init__(self): self.model_path = './IrisClassifier.sav' self.model = joblib.load(self.model_path) def train(self, training_directory): (X,y) = self.load_data(os.path.join(training_directory, 'train.csv')) self.model.fit(X,y) def evaluate(self, evaluation_directory): (X,y) = self.load_data(os.path.join(evaluation_directory, 'evaluate.csv')) return self.model.score(X,y) def save(self): joblib.dump(self.model, self.model_path) def load_data(self, path): # The last column in csv file is the target column for prediction. df = pd.read_csv(path) X = df.iloc[:, :-1].get_values() y = df.iloc[:, 'y'].get_values() return X,y - Bearbeiten Sie requirements.txt, falls erforderlich:
pandas==1.0.1 scikit-learn==0.19.0
pandas==1.0.1 scikit-learn==0.19.0 - Endgültige Ordnerstruktur (Paket):
IrisClassifier/ - IrisClassifier.sav - main.py - requirements.txt - train.py
IrisClassifier/ - IrisClassifier.sav - main.py - requirements.txt - train.pyHinweis: Dieses Modell kann jetzt zuerst bereitgestellt werden, und da neue Datenpunkte über den Roboter oder Human-in-the-Loop in das System kommen, können Trainings- und Auswertungspipelines erstellt werden, die train.py nutzen.
- ML-Pakete strukturieren
- Ausgebende Komponente
- Trainings- und Auswertungskomponente
- Umgang mit Datentypen
- String-Daten
- Dateidaten
- Dateidaten
- Beibehalten beliebiger Daten
- Verwenden von TensorFlow
- Informationen zur GPU-Nutzung
- Beispiele
- Einfaches Ready-to-Serve-ML-Modell ohne Training
- Einfaches Ready-to-Serve-Modell mit aktiviertem Training