ai-center
latest
false
- 发行说明
- 入门指南
- 通知
- 项目
- 数据集
- 数据标签
- ML 包
- 开箱即用包
- 管道
- ML 技能
- ML 日志
- AI Center 中的 Document Understanding™
- AI Center API
- 许可
- AI 解决方案模板
- 如何
- 将自定义命名实体识别与持续学习结合使用
- 基本故障排除指南
将自定义命名实体识别与持续学习结合使用
重要 :
请注意此内容已使用机器翻译进行了部分本地化。
AI Center
Last updated 2024年11月19日
将自定义命名实体识别与持续学习结合使用
本示例用于按研究论文中提及的类别提取化学物。按照以下过程提取化学物,并将其分类为 ABBREVIATION、FAMILY、FORMULA、IDENTIFIER、MULTIPLE、SYSTEMATIC、TRIVIAL 和 NO_CLASS。
此过程使用“自定义命名实体识别”包。有关此包的工作原理及其用途的更多信息,请参见自定义命名实体识别。
对于此过程,我们提供了如下示例文件:
按照以下步骤,按研究论文中的类别提取化学物。
要开始使用 Label Studio 并将数据导出至 AI Center,请按照以下说明操作。
- 在本地计算机或云实例上安装 Label Studio。为此,请按照此处的说明进行操作。
- 根据命名实体识别模板创建一个新项目,并定义“标签名称”。
- 确保标签名称没有特殊字符或空格。例如,使用
SetDate
代替Set Date
。 - 请确保
<Text>
标签的值为"$text"
。 - 使用此处的 API 上传数据。
cURL 请求示例:
curl --location --request POST 'https://<label-studio-instance>/api/projects/<id>/import' \)\) --header 'Content-Type: application/json' \)\) --header 'Authorization: Token <Token>' \)\) --data-raw '[ { "data": { "text": "<Text1>" }, }, { "data": { "text": "<Text2>" } } ]'
curl --location --request POST 'https://<label-studio-instance>/api/projects/<id>/import' \)\) --header 'Content-Type: application/json' \)\) --header 'Authorization: Token <Token>' \)\) --data-raw '[ { "data": { "text": "<Text1>" }, }, { "data": { "text": "<Text2>" } } ]' - 标注数据。
- 以 CoNLL 2003 格式导出数据,并将其上传到 AI Center。
- 在提供的示例工作流中提供了 Label Studio 实例 URL 和 API 密钥,以捕获错误的预测和低可信度预测。