ai-center
latest
false
重要 :
请注意此内容已使用机器翻译进行了部分本地化。
UiPath logo, featuring letters U and I in white
AI Center
Automation CloudAutomation SuiteStandalone
Last updated 2024年11月19日

概述

UiPath provides a number of machine learning capabilities out-of-the-box on UiPath® AI Center. A notable example is Document UnderstandingTM. In addition, UiPath built and open-source models (serving-only and retrainable) are continuously added to AI Center.

注意: 在 AI Center 中创建 ML 包时,不能使用任何 Python 保留关键字命名,例如classbreakfromfinallyglobalNone等。请务必选择其他名称。 列出的示例不完整,因为class <pkg-name>import <pck-name>使用了包名称。
注意:这些模型按原样受支持,并且不会积极处理以提高模型性能。 由于代码是开源的,因此完全可以进行优化。 我们将尽最大努力调查和修复与 UiPath 平台使用相关的错误,且不提供 SLA 保证。 不建议在关键生产工作流中使用这些模型。

目前,平台中提供以下包:

模型

类别

类型

可用性

图像分类UiPath 图像分析自定义训练预览
签名比较UiPath 图像分析预训练正式发布
自定义命名实体识别UiPath 语言分析自定义训练正式发布
浅色文本分类UiPath 语言分析自定义训练正式发布
多语言文本分类UiPath 语言分析自定义训练正式发布
语义相似度UiPath 语言分析预训练预览
多标签文本分类UiPath 语言分析自定义训练预览
TM 分析器模型UiPath Task Mining自定义训练正式发布
图像审核开源包 - 图像分析预训练不适用
目标检测开源包 - 图像分析预训练和自定义训练不适用
英语文本分类开源包 - 语言分析自定义训练不适用
法语文本分类开源包 - 语言分析自定义训练不适用
日语文本分类开源包 - 语言分析自定义训练不适用
语言检测开源包 - 语言分析预训练不适用
命名实体识别开源包 - 语言分析预训练不适用
情感分析开源包 - 语言分析预训练不适用
文本分类开源包 - 语言分析自定义训练不适用
问答开源包 - 语言理解预训练不适用
语义相似度开源包 - 语言理解预训练不适用
文本摘要开源包 - 语言理解预训练不适用
英语到法语翻译开源包 - 语言翻译预训练不适用
英语到德语翻译开源包 - 语言翻译预训练不适用
英语到俄语翻译开源包 - 语言翻译预训练不适用
德语到英语翻译开源包 - 语言翻译预训练不适用
多语言翻译器开源包 - 语言翻译预训练不适用
俄语到英语翻译开源包 - 语言翻译预训练不适用
TPOT 表格分类开源包 - 表格数据自定义训练不适用
TPOT 表格回归开源包 - 表格数据自定义训练不适用
XGBoost 表格分类开源包 - 表格数据自定义训练不适用
XGBoost 表格回归开源包 - 表格数据自定义训练不适用
注意:对于 Document Understanding 模型,请查看 Document Understanding 指南

可部署

可以立即部署并添加到 RPA 工作流中的示例包,更多信息请参见产品

图像审核

这是基于深度学习架构(通常称为 Inception V3)的图像内容审核模型。基于给定图像,模型将输出“显式”、“显式绘图”、“中性”和“色情”四个类别中的一个,以及每个类别概率的标准化置信度分数。

它基于 Szegedy 等人的论文《Rethinking the Inception Architecture for Computer Vision》,并且 Google 已开放源代码。

情感分析

此模型可预测英语文本的情感。此模型由 Facebook 研究院开放源代码。可能的预测包括“非常消极”、“消极”、“中性”、“积极”和“非常积极”。我们已使用 Amazon 产品评论数据对此模型进行训练,因此,对于不同的数据分布,模型预测可能会产生一些意外结果。一个常见的用例是根据文本的情感路由非结构化语言内容(例如电子邮件)。

它基于 Joulin 等人的研究论文《Bag of Tricks for Efficient Text Classification》。

问答

此模型会根据某些段落上下文预测英语文本问题的答案。它由 ONNX 开放源代码。一个常见的用例是在 KYC 中或处理财务报表时,其中常见问题可以应用于一组标准的半结构化文档。它基于先进的 BERT(基于变换器的双向编码器表示)。此模型将流行的注意力模型“变换器”应用到语言建模中,以生成输入的编码,然后针对问题回答任务进行训练。

它基于研究论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》(BERT:预训练用于语言理解的深度双向变换器)。

语言识别

此模型可预测文本输入的语言。可能的预测为以下 176 种语言之一:

语言

af als am an arz asast av az azb ba bar bcl be bg bh bn bo bpy br bs bxr ca cbk ce ceb ckb co cs cv cy da de diq dsb dty dv el eml en eo es et eu fa fi fr frr fy ga gd gl gn gom gu gv he hi hif hr hsb ht hu hy ia id ie ilo io io is it ja jbo jv ka kk km kn ko krc ku kv kw ky la lb lez li lmo lo lrc lt lv mai mg mhr min mk ml mn mr mrj ms mt mwl my myv mzn nah nap nds ne new nl nn no oc 或 os pa pam pfl pl pms pnb ps pt qu rm ro ru rue sa sah sc scn sco sd sh si sk sl so sq sr su sv sw ta te tg th tk tl tr tt tyv ug uk ur uz vec vep vi vls vo wa war wuu xal xmf yi yo yue zh

此模型由 Facebook 研究院开放源代码。此模型根据知识共享署名份额许可证 3.0,使用来自维基百科、Tatoeba 和 SETimes 的数据进行训练。一个常见的用例是根据文本的语言将非结构化语言内容(例如电子邮件)路由到相应的响应者。

它基于 Joulin 等人的研究论文《Bag of Tricks for Efficient Text Classification》。

多语言翻译器

此模型可直接在任何 200 多种语言之间提供翻译。 您可以在此处找到完整的语言列表以及使用每种语言的相应代码。

这是元 AI 研究院开源的不遗余力模型的 HuggingFace 集成。 该模型是在以下许可证下发布的:许可证

输入说明

模型输入是具有三个键的 JSON:
  • text :要翻译的文本。
  • from_lang :要翻译的文本的语言代码。
  • to_lang :目标文本的语言代码。
例如:
{"text" : "UN Chief says there is no military solution in Syria", "from_lang" : "eng_Latn", "to_lang" : "fra_Latn" }"{"text" : "UN Chief says there is no military solution in Syria", "from_lang" : "eng_Latn", "to_lang" : "fra_Latn" }"

输出说明

该模型以目标语言返回翻译后的文本:
"Le chef de l'ONU dit qu'il n'y a pas de solution militaire en Syrie""Le chef de l'ONU dit qu'il n'y a pas de solution militaire en Syrie"

英语到法语

这是一个序列到序列机器翻译模型,用于将英语翻译成法语。此模型由 Facebook AI 研究院 (FAIR) 开放源代码。

它基于 Gehring 等人的论文《Convolutional Sequence to Sequence Learning》(卷积序列到序列学习)。

英语到德语

这是一个序列到序列机器翻译模型,用于将英语翻译成德语。此模型由 Facebook AI 研究院 (FAIR) 开放源代码。

它基于 Ng 等人的论文《Facebook FAIR's WMT19 News Translation Submission》。

德语转英语

这是一个序列到序列机器翻译模型,用于将英语翻译成俄语。此模型由 Facebook AI 研究院 (FAIR) 开放源代码。

它基于 Ng 等人的论文《Facebook FAIR's WMT19 News Translation Submission》。

英语到俄语

这是一个序列到序列机器翻译模型,用于将英语翻译成俄语。此模型由 Facebook AI 研究院 (FAIR) 开放源代码。

它基于 Ng 等人的论文《Facebook FAIR's WMT19 News Translation Submission》。

俄语到英语

这是一个序列到序列机器翻译模型,用于将英语翻译成俄语。此模型由 Facebook AI 研究院 (FAIR) 开放源代码。

它基于 Ng 等人的论文《Facebook FAIR's WMT19 News Translation Submission》。

命名实体识别

此模型以文本形式返回已识别实体的列表。已识别的 18 种命名实体使用与 OntoNotes5 中相同的输出类,后者在学术界通常用于对此任务进行基准测试。此模型基于 Borchmann 等人在 2018 年发表的论文《Approaching nested named entity recognition with parallel LSTM-CRFs》(使用并行 LSTM-CRF 处理嵌套命名实体识别)。

18 个类如下:

实体

描述

Person

人物,包括虚构人物。

NORP

国籍、宗教或政治团体。

FAC

建筑物、机场、公路、桥梁等。

ORG

公司、代理商和机构等。

GPE

国家/地区、市、省/直辖市/自治区。

LOC

非 GPE 地点、山脉、水域。

产品

物体、车辆和食物等(非服务性)。

事件

命名的飓风、战役、战争和体育比赛等。

WORK_OF_ART

书籍和歌曲等的标题

LAW

成为法律的命名文档。

语言

任何已命名的语言。

日期

绝对或相对日期或期间。

时间

小于一天的时间。

PERCENT

百分比,包括“%”。

MONEY

货币值,包括单位。

数量

重量或距离的度量。

ORDINAL

“第一”和“第二”等

CARDINAL

不属于其他类型的数字。

Re-trainable

可通过将数据添加到 AI Center 存储并启动管道来训练示例包,产品中包含更多模型。

英语文本分类

这是一个通用、可重新训练的模型,适用于英语文本分类。常见用例包括电子邮件分类、服务票证分类、自定义情感分析等。有关更多详细信息,请参见英文文本分类

法语文本分类

这是一个通用、可重新训练的模型,适用于法语文本分类。常见用例包括电子邮件分类、服务票证分类、自定义情感分析等。有关更多详细信息,请参见法语文本分类

多语言文本分类

这是用于文本分类的通用、可重新训练模型的预览版本。 它支持此处列出的 100 种 Wikipedia 语言。 此 ML 包必须经过训练,如果在未事先进行训练的情况下部署此包,部署将失败,并显示错误,指明模型未经过训练。 它基于 BERT,是一种用于预训练自然语言处理系统的自监督方法。 建议使用 GPU,尤其是在训练期间。 GPU 可使速度提高约 5 到 10 倍。

自定义命名实体识别

此预览版模型允许您导入自己标记有要提取的实体的数据集。训练数据集和评估数据集需要采用 CoNLL 格式。

表格分类 AutoML - TPOT

这是一个通用、可重新训练的模型,适用于表格(例如,CSV 和 Excel)数据分类。也就是说,假设一个表包含多个列和一个目标列,它会为这些数据找到一个模型。有关更多详细信息,请参见 TPOT AutoML 分类

表格分类 - TPOT XGBoost

这是一个通用、可重新训练的模型,适用于表格(例如,CSV 和 Excel)数据分类。也就是说,假设一个表包含多个列和一个目标列,它会为这些数据找到一个模型(基于 XGBoost)。请参见 TPOT XGBoost 分类

此页面有帮助吗?

获取您需要的帮助
了解 RPA - 自动化课程
UiPath Community 论坛
Uipath Logo White
信任与安全
© 2005-2024 UiPath。保留所有权利。