AI Center
2022.10
False
Managing ML Packages - Automation Suite 2022.10
Bannerhintergrundbild
Logo
AI Center – Benutzerhandbuch
Letzte Aktualisierung 19. Dez. 2023

Verwalten von ML-Paketen

Hinweis:

Ab 2022.10, Das Importieren und Exportieren von ML-Paketen mithilfe von Skripts wird nicht mehr unterstützt.

Weitere Informationen zum Importieren und Exportieren von ML-Paketen über die UI finden Sie in den Abschnitten ML-Paket importieren und ML-Pakete herunterladen.

Hochladen von ML-Paketen

Es gibt drei Möglichkeiten, ein neues Paket zu erstellen:

  • ZIP-Datei hochladen: Verwenden Sie diese Option, wenn Sie eine ZIP-Datei vorbereitet haben.
  • Sofort einsetzbare Pakete: Verwenden Sie diese Option, wenn Sie ein ML-Paket verwenden möchten, das von UiPath oder der Open Source-Community entwickelt wurde.
  • ML-Paket importieren: Verwenden Sie diese Option, um ein Paket zu importieren, das zuvor aus UiPath AI Center™ exportiert wurde.
    Hinweis: Um auf die Seite „ML-Paket importieren“ zuzugreifen, stellen Sie sicher, dass Ihnen die Rolle OOB_UPLOAD auf Mandantenebene zugewiesen ist. Weitere Informationen finden Sie unter Verwalten von Berechtigungen auf Mandantenebene.

ZIP-Datei hochladen

Wichtig:

Bevor Sie Pakete hochladen, stellen Sie sicher, dass diese wie hier angegeben erstellt wurden.

Beim Erstellen eines DU ML-Pakets im AI Center™ darf der Paketname kein reserviertes Python-Schlüsselwort enthalten, z. B. class, break, from, finally, global, None usw. Wählen Sie einen anderen Namen aus. Die aufgeführten Beispiele sind nicht vollständig, da der Paketname für class <pkg-name> und import <pck-name> verwendet wird.

Führen Sie die folgenden Schritte aus, um ein bereits erstelltes Paket hochzuladen:

  1. Klicken Sie auf der Seite ML-Pakete auf die Schaltfläche ZIP-Datei Hochladen. Die Seite Neues Paket erstellen wird angezeigt.
  2. Geben Sie auf der Seite Neues Paket erstellen einen Namen für Ihr Paket ein.
  3. Klicken Sie auf Paket hochladen, um die gewünschte .zip-Datei auszuwählen, oder ziehen Sie die .zip-Paketdatei per Drag and Drop in das Feld Paket hochladen.
  4. (Optional) Geben Sie eine eindeutige Beschreibung des Modells an.

    Die Beschreibung wird angezeigt, während eine neue Fähigkeit basierend auf diesem Modell sowie auf der Seite ML-Pakete bereitgestellt wird.

  5. Wählen Sie den Eingabetyp aus der Dropdownliste aus. Folgende Optionen stehen zur Auswahl:
    • json
    • Datei
    • Dateien
  6. Optional: Geben Sie eine eindeutige Beschreibung der vom Modell erwarteten Eingabe ein.
  7. Optional: Geben Sie eine eindeutige Beschreibung der vom Modell zurückgegebenen Ausgabe ein.
    Diese Beschreibungen sind für RPA-Entwickler sichtbar, die die Aktivität „ML-Fähigkeit“ in UiPath Studio verwenden. Als bewährte Vorgehensweise empfehlen wir, ein Beispiel für die Eingabe- und Ausgabeformate zu zeigen, um die Kommunikation zwischen Datenspezialisten und Entwicklern zu erleichtern.
  8. Wählen Sie die Entwicklungssprache des Modells aus der Dropdownliste aus. Folgende Optionen stehen zur Auswahl:
    • Python 3.7
    • Python 3.8
    • Python 3.8 OpenCV
  9. Wählen Sie aus, ob das Machine Learning-Modell eine GPU benötigt oder nicht; standardmäßig ist dies auf „Nein“ festgelegt. Diese Informationen werden als Vorschlag dafür angezeigt, wann eine Fähigkeit aus diesem Paket erstellt wird.
  10. Wählen Sie aus, ob Trainings für Ihr Modell aktiviert werden sollen. Dies passiert, wenn sie aktiviert sind:
    • Das Paket kann in jeder Pipeline verwendet werden.
    • Der Validierungsschritt prüft, ob die train.py-Datei im Paket implementiert ist, andernfalls schlägt die Validierung fehl.


  11. Klicken Sie auf Erstellen, um das Paket hochzuladen, oder auf Abbrechen, um den Prozess abzubrechen. Das Fenster Neues Paket erstellen wird geschlossen, das Paket wird hochgeladen und zusammen mit seinen Details auf der Seite ML-Pakete > [ML-Paketname] angezeigt. Es kann einige Minuten dauern, bis Ihr Upload weitergegeben wird.


ML-Paket importieren

Führen Sie die folgenden Schritte aus, um ein aus UiPath AI Center™ exportiertes Paket hochzuladen:

  1. Klicken Sie auf der Seite ML-Pakete auf die Schaltfläche ML-Paket importieren. Die Seite Neues Paket importieren wird angezeigt.
  2. Fügen Sie im Feld Paket hochladen die zip-Datei hinzu, die mit dem Verfahren Herunterladen von ML-Paketen heruntergeladen wurde.
  3. Fügen Sie im Feld Metadaten-JSON hochladen die json-Datei hinzu, die mit dem obigen Verfahren heruntergeladen wurde.
  4. Klicken Sie auf Erstellen.


Private Pakete

  • Das importierte Paket hat denselben Namen wie in der Exportumgebung, der aus der Metadatendatei stammt. Wenn bereits ein Paket mit demselben Namen vorhanden ist, wird als nächstes das Feld version aus den Metadaten überprüft. Wenn die Version gleich ist, wird eine neue Nebenversion erstellt. Wenn Sie beispielsweise ein Paket mit dem Namen New Package , Version 7 importieren und bereits ein Paket mit demselben Namen haben, aber Version 7.3 vorhanden ist, ist das neue importierte Paket Version 7.4 . Wenn keine Version vorhanden ist, enthält das erstellte Paket die nächste verfügbare Hauptversion.
  • Wenn der Name aus den importierten Paketmetadaten in der Zielumgebung nicht vorhanden ist, wird der neue Paketname in der Zielumgebung erstellt.

Öffentliche Pakete

  • Das importierte Paket hat denselben Namen wie in der Exportumgebung, der aus der Metadatendatei stammt. Wenn bereits ein Paket mit demselben Namen vorhanden ist, wird das sourcePackageVersion -Feld aus den Metadaten als nächstes auf sourcePackageVersion in der Zielumgebung überprüft. Danach wird die nächste Nebenversion hochgeladen. Stellen Sie sicher, dass Sie entweder die Version in der Zielumgebung ändern oder das Feld sourcePackageVersion in der Metadatendatei in die verfügbare Version in der Zielumgebung ändern.
  • Wenn der Name aus den importierten Paketmetadaten in der Zielumgebung nicht vorhanden ist, wird der neue Paketname in der Zielumgebung erstellt.

Paketvalidierungen

Für die Ausgabe

Bei Modellen, die mit dem Flag inaktiv für Training aktivieren hochgeladen werden, validiert das AI Center beim Hochladen eines Modells die hochgeladene .zip-Datei anhand der hier beschriebenen Anforderungen. Die folgenden drei Überprüfungen werden durchgeführt:
  1. Ein nicht leerer Stammordner ist vorhanden.
  2. Eine requirements.txt-Datei ist vorhanden.
  3. Im Stammordner ist eine Datei mit dem Namen main.py vorhanden, die eine Klasse Main implementiert. Die Klasse wird weiter validiert, um eine __init__- und eine predict-Funktion zu implementieren.

Das Ergebnis der Validierung (Erfolg oder Fehlschlag) sowie eventuelle Fehler, die zu einem Fehlschlag geführt haben, werden auf der Seite ML-Protokolle angezeigt.

Für das Training

Bei Modellen, die bei der Option Training aktivieren mit dem Flag aktiv hochgeladen wurden, überprüft AI Center nicht nur die oben genannten Anforderungen, sondern auch die hochgeladene .zip-Datei anhand der hier beschriebenen Anforderungen. Für diese Pakete werden die folgenden beiden Prüfungen durchgeführt:
  1. Ein nicht leerer Stammordner ist vorhanden.
  2. Im Stammordner ist eine Datei mit dem Namen train.py vorhanden, die eine Klasse Main implementiert. Die Klasse wird weiter validiert, um eine __init__-Funktion und die folgenden Funktionen zu implementieren: train, evaluate und save.

Das Ergebnis der Validierung (Erfolg oder Fehlschlag) sowie eventuelle Fehler, die zu einem Fehlschlag geführt haben, werden auf der Seite ML-Protokolle angezeigt.

Anzeigen von ML-Paketdetails

Klicken Sie auf ein Paket in der Liste und rufen Sie ML-Paket > [ML-Paketname] auf.

Zeigen Sie auf der Registerkarte Version die Details an: Paketversion, Erstellungszeit, Änderungsprotokoll, Status, ob Training aktiviert ist, ob empfohlene GPU aktiviert ist, und Argumente.



Weitere Informationen zu den einzelnen Einträgen finden Sie in der ML-Paketversion über das Symbol ⁝ und Details. Ein Dialogfeld mit allen Informationen zur Paketversion wird angezeigt.



Zeigen Sie auf der Registerkarte Pipelineausführungen die Details im Zusammenhang mit den Pipelineausführungen des Pakets an: Paketname, Typ, Version, Status, Erstellungszeit, Dauer, Punktzahl und zusätzliche Details.



Versionskontrolle

AI Center unterstützt auch die Versionierung und Versionsverwaltung von Paketen. Wenn ein Paket hochgeladen wird, wird es als Version 1.0 dieses Pakets angezeigt (dabei ist 1 die Hauptversionsnummer und 0 die Nebenversionsnummer). Dies hilft bei der Unterscheidung zwischen Paketen, die von Benutzern hochgeladen werden, und Paketen, die über Pipelines erneut trainiert werden, wobei sich bei letzteren nur die Nebenversionsnummer ändert.

Hochladen neuer ML-Paketversionen

Führen Sie die folgenden Schritte aus, um eine neue Version für ein bereits hochgeladenes Paket hochzuladen:

  1. Klicken Sie auf der Seite ML-Pakete neben einem Paket auf ⁝ und wählen Sie die Option Neue Version hochladen aus.

    Alternativ klicken Sie auf der Seite ML-Paket > [ML-Paketname] auf Neue Version hochladen. Das Fenster Neue Paketversion hochladen für > [ML-Paketname] wird angezeigt, wobei die meisten Felder mit den Informationen ausgefüllt sind, die Sie zum Zeitpunkt des ersten Hochladens dieses Pakets angegeben haben.

  2. Klicken Sie auf Paket hochladen, um die gewünschte .zip-Datei auszuwählen, oder ziehen Sie die Datei per Drag and Drop zu diesem Feld.
  3. Optional: Aktualisieren Sie die vorhandenen Informationen in den folgenden Feldern:
    • Eingabebeschreibung
    • Ausgabebeschreibung
    • Sprache
  4. Optional: Geben Sie im Feld ChangeLog die Änderungen ein.
  5. Wählen Sie aus, ob das Modell eine GPU benötigt; standardmäßig ist dies auf „Nein“ festgelegt.
  6. Wählen Sie aus, ob Trainings für Ihr Modell aktiviert werden sollen.
  7. Klicken Sie auf Erstellen, um die neue Version für das vorhandene hochgeladene Paket hochzuladen, oder auf Abbrechen, um den Prozess abzubrechen. Das Fenster Paket hochladen wird geschlossen und die neue Version des Pakets hochgeladen. Es kann einige Minuten dauern, bis Ihr Upload weitergegeben wird.


Die neue Version des Pakets ist nicht direkt auf der Seite ML-Pakete sichtbar. Sie können die Informationen auf der Seite ML-Paketdetails für dieses Paket anzeigen.

Hinweis: Wenn eine neue Version in ein vorhandenes Paket hochgeladen wird, wird eine neue Hauptversion erstellt. Wenn ich beispielsweise mein erstes Paket hochgeladen habe, ist dieser Upload Version 1.0. Wenn ich eine neue Version hochlade, ist dies Version 2.0.

ML-Paketversionen erstellt durch Trainingspipelines

Wenn eine Trainingspipeline oder eine vollständige Pipeline erfolgreich auf einer Paketversion ausgeführt wird, wird eine neue Nebenversion erstellt. Wenn ich z. B. ein Paket (Version 1.0) hochgeladen und eine Trainingspipeline gestartet habe, wird nach Abschluss Version 1.1 auf der Seite ML-Paketdetails wie im Folgenden angezeigt:



Anzeigen von Paketargumenten

Klicken Sie auf der Seite ML-Paket > [ML-Paketname] unter der Registerkarte Version neben einer Paketversion auf das Informationssymbol. Das Fenster Argumente für > [ML-Paketname] > [ML-Paketversion] wird angezeigt.

Der Eingabetyp und die Eingabe- und Ausgabebeschreibungen der ausgewählten Paketversion werden angezeigt. Bitte beachten Sie, dass Sie die Werte nicht bearbeiten können.

Herunterladen von ML-Paketen

Sie können ein bereits erstelltes Paket exportieren und in eine andere oder dieselbe Umgebung importieren.

Hinweis: Basisversionen von Docker-basierten Modellen können nicht heruntergeladen werden, da keine ZIP-Datei verfügbar ist. Sobald das Docker-basierte Modell trainiert wurde, steht der trainierten Version eine ZIP-Datei zur Verfügung.

Führen Sie die folgenden Schritte aus, um ein bereits erstelltes Paket herunterzuladen:

  1. Wählen Sie auf der Seite ML-Pakete ein bereits erstelltes Paket aus der Liste aus.


  2. Klicken Sie auf der Registerkarte Version auf das Symbol des Pakets.
  3. Klicken Sie auf Herunterladen.


Nachdem Sie auf Herunterladen geklickt haben, werden zwei Dateien heruntergeladen:

  • Eine zip -Datei, die das Paket enthält
  • Eine json-Datei, die die Paketmetadaten wie Name, Version und andere Informationen enthält. Diese Informationen sind erforderlich, um das heruntergeladene Paket dem richtigen Paket in der neuen Umgebung zuzuordnen.

Löschen von ML-Paketen

Pakete können nur gelöscht werden, wenn sie nicht innerhalb einer Fähigkeit bereitgestellt werden und derzeit keine Pipelines mit diesen Paketen ausgeführt werden.

  1. Klicken Sie auf der Seite ML-Pakete neben einem Paket auf ⁝ und wählen Sie die Option Nicht bereitgestellte Versionen löschen aus. Ein Bestätigungsfenster wird angezeigt.
  2. Klicken Sie im Bestätigungsfenster auf OK, um alle nicht bereitgestellten Versionen des ausgewählten Pakets zu löschen. Wenn eine Paketversion Teil einer Fähigkeit ist (sie ist aktiv), wird sie NICHT gelöscht. Wenn alle Versionen inaktiv sind, werden sie alle gelöscht.

ODER

  1. Klicken Sie auf der Seite ML-Paket > [ML-Paketname] unter der Registerkarte Version neben einer Paketversion auf ⋮ und wählen Sie Löschen aus. Ein Bestätigungsfenster wird angezeigt.
  2. Klicken Sie im Bestätigungsfenster auf OK, um die ausgewählte Paketversion zu löschen. Wenn eine Paketversion Teil einer Fähigkeit ist (sie ist aktiv), wird sie NICHT gelöscht. Wenn dies die einzige Version für das ausgewählte Paket ist, wird auch das Paket selbst gelöscht.
Symbol für Support und Dienste
Hilfe erhalten
UiPath Academy-Symbol
RPA lernen – Automatisierungskurse
Symbol für UiPath-Forum
UiPath Community-Forum
UiPath Logo weiß
Vertrauen und Sicherheit
© 2005-2024 UiPath. All rights reserved.