- Notas de Versão
- Antes de começar
- Introdução
- Projetos
- Conjuntos de dados
- Pacotes de ML
- Pipelines
- Habilidades de ML
- Logs de ML
- Document Understanding no AI Center
- Como fazer
- Guia básico de solução de problemas

Guia do usuário do AI Center
Classificação AutoML do TPOT
linkPacotes do SO > Dados tabulares > TPOTAutoMLClassification
Esse modelo é um modelo de classificação de dados tabulares genéricos (apenas de valor numérico) que precisa ser retreinado antes de ser usado para previsão. Ele depende do TPOT para encontrar automaticamente o melhor modelo.
TPOT é uma ferramenta de machine learning python automatizada, que otimiza os pipelines de machine learning usando a programação genética. O TPOT automatiza a parte mais tediosa do aprendizado de máquina, ao explorar de forma inteligente milhares de pipelines possíveis para encontrar o melhor para seus dados. Após o TPOT terminar de pesquisar (ou você se cansar de esperar), ele fornece o código Python para o melhor pipeline que encontrou, para que seja possível improvisar com o pipeline de lá. O TPOT é construído em cima do scikit-learn e, portanto, todo o código que ele gera deve parecer familiar para usuários do scikit-learn.
Tipo de Entrada
linkJSON
Descrição da entrada
linkRecursos usados pelo modelo para fazer previsões. Por exemplo: { “Recurso1”: 12, “Recurso2”: 222, ..., “RecursoN”: 110}
Descrição da saída
linkJSON com classe prevista, confiança associada na previsão dessa classe (entre 0 e 1) e o nome do rótulo. Os nomes dos rótulos são retornados apenas se a codificação dos rótulos for executada pelo pipeline, dentro do AI Center. Alguns modelos de scikit-learn não são compatíveis com pontuações de confiança. Se a saída do pipeline de otimização for um modelo scikit-learn que não é compatível com as pontuações de confiança, a saída conterá apenas a classe prevista.
Exemplo:
{
"predictions": 0,
"confidences": 0.6,
"labels": "yes"
}
{
"predictions": 0,
"confidences": 0.6,
"labels": "yes"
}
Ou, se a codificação do rótulo foi feita fora do modelo:
{
"predictions": 0,
"confidences": 0.6
}
{
"predictions": 0,
"confidences": 0.6
}
Pipelines
Todos os três tipos de pipelines (Treinamento completo, Treinamento e Avaliação) são suportados por esse pacote.
Enquanto você treina o modelo pela primeira vez, as classes serão inferidas olhando para todo o conjunto de dados fornecido.
Formato do conjunto de dados
linkEsse pacote de ML procurará arquivos csv em seu conjunto de dados (não em subdiretórios)
Os arquivos csv precisam seguir essas duas regras:
- a primeira linha dos dados deve conter os nomes do cabeçalho/coluna.
- todas as colunas, exceto para a target_column, devem ser numérica (inteiro, flutuante). O modelo não é capaz de executar a codificação dos recursos; entreentanto, ele é capaz de realizar a codificação de destino. Se a codificação de destino for executada pelo modelo, no tempo da previsão, o modelo também retornará o rótulo da variável de destino.
Variáveis de Ambiente
link- max_time_mins: tempo para executar o pipeline (em minutos). Quanto maior o tempo do treinamento, melhores as chances de o TPOT encontrar um bom modelo. (padrão: 2)
- target_column: nome da coluna de destino (padrão: "target")
- scoring: o TPOT usa o sklearn.model_selection.cross_val_score para avaliar pipelines e, dessa forma, oferece o mesmo suporte para funções de pontuação (padrão: "accuracy"). Usa métricas de pontuação padrão do scikit-learn (https://scikit-learn.org/stable/modules/model_evaluation.html)
- keep_training: as execuções típicas do TPOT demoram de horas a dias (a menos que seja um conjunto de dados pequeno), mas é possível interromper a execução no meio e ver os melhores resultados até o momento. Se o keep_training estiver definido como True, o TPOT continuará o treinamento de onde o deixou.
target
), é necessário atualizar a variável de ambiente target_column manualmente. Você pode fazer isso na janela Criar nova execução de pipeline clicando no botão + Adicionar novo na seção Inserir parâmetros. No campo Variável de ambiente adicione a variável (target_column) e, no campo Valor, adicione o nome da coluna do seu arquivo. Quando terminar, clique no símbolo.
Artefatos
linkO TPOT exporta o código Python correspondente para o pipeline otimizado para um arquivo python, chamado "TPOT_pipeline.py". Após o código terminar a execução, "TPOT_pipeline.py" conterá o código Python para o pipeline otimizado.
Papel
O modelo é baseado em duas publicações:
- "Scaling tree-based automated machine learning to biomedical big data with a feature set selector." de Trang T. Le, Weixuan Fu and Jason H. Moore (2020)
- "Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science." de Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, e Jason H. Moore