communications-mining
latest
false
- Getting started
- Balance
- Clusters
- Concept drift
- Coverage
- Datasets
- General fields (previously entities)
- Labels (predictions, confidence levels, hierarchy, etc.)
- Models
- Streams
- Model Rating
- Projects
- Precision
- Recall
- Reviewed and unreviewed messages
- Sources
- Taxonomies
- Training
- True and false positive and negative predictions
- Validation
- Messages
- Administration
- Manage sources and datasets
- Understanding the data structure and permissions
- Create a data source in the GUI
- Uploading a CSV file into a source
- Create a new dataset
- Multilingual sources and datasets
- Enabling sentiment on a dataset
- Amend a dataset's settings
- Delete messages via the UI
- Delete a dataset
- Delete a source
- Export a dataset
- Using Exchange Integrations
- Preparing data for .CSV upload
- Model training and maintenance
- Understanding labels, general fields and metadata
- Label hierarchy and best practice
- Defining your taxonomy objectives
- Analytics vs. automation use cases
- Turning your objectives into labels
- Building your taxonomy structure
- Taxonomy design best practice
- Importing your taxonomy
- Overview of the model training process
- Generative Annotation (NEW)
- Understanding the status of your dataset
- Model training and annotating best practice
- Training with label sentiment analysis enabled
- Train
- Introduction to Refine
- Precision and recall explained
- Precision and recall
- How does Validation work?
- Understanding and improving model performance
- Why might a label have low average precision?
- Training using Check label and Missed label
- Training using Teach label (Refine)
- Training using Search (Refine)
- Understanding and increasing coverage
- Improving Balance and using Rebalance
- When to stop training your model
- Using general fields
- Generative extraction
- Using analytics and monitoring
- Automations and Communications Mining
- Licensing information
- FAQs and more
Communications Mining User Guide
Last updated Nov 7, 2024
Sources
A 'source' refers to a raw collection of messages which can grow over time. For example, a source could be all the responses collected to a survey, the emails in a team mailbox, the transcripts in a messaging channel, or all of the calls against a telephone number.
Sources are added to datasets in order to build a model to interpret and structure the messages within them.
Each source can be added to up to 10 different datasets.
You can add up to 20 sources to a dataset within the platform's GUI.
An example source card in the Sources page
Note: You should only add multiple sources to a dataset if they are of a similar type and share a similar intended purpose (e.g.
capturing customer feedback, or multiple email inboxes that service similar requests).
You can see all of the sources in your account by navigating to the Sources page.